
TUG Seneca night school program

1Web services and IBM i

Introduction to
Web services for RPG developers

Claus Weiss clausweiss22@gmail.com

TUG meeting March 2011

TUG Seneca night school program

2Web services and IBM i

Acknowledgement

In parts of this presentation I am using work published by:

Linda Cole, IBM Canada

Scott Klement, Klement Sausage Co., Inc.

TUG Seneca night school program

3Web services and IBM i

Agenda

 Web Services: What are they? Why use
them?

 Creating a Web Service
Using RPG
Using EGL

 Consuming a web service
Using Web Service explorer
With EGL
With RPG using EGL or HTTPAPI

TUG Seneca night school

Based on IBM Rational Developer for IBM i education material

Public
Web Service

4

Change in the marketplace, IBM i, & App.Development

The 1990’s New Millennium

ILE: Smaller, reusable
 programs

iSeries

Web Service

IBM i

Client/Server

The 1980’s

Large, monolithic
RPG programs

AS/400

System 38…AS/400

iSeries

 IBM i

TUG Seneca night school program

5Web services and IBM i

The Problem: Integration
 Integrating software applications across multiple operating systems, programming languages, and

hardware platforms is
 Difficult
 Not something that can be solved by any one particular proprietary environment

 Traditionally, the problem has been one of tight-coupling
 One application that calls a remote network is tied strongly to it by the function call it makes and the parameters

it requests
 Fixed interface to access remote programs or data, with little flexibility or adaptability to changing environments

or needs

 What are Web services:
 self-contained software components,
 with well-defined interfaces (WSDL),
 that can be invoked over a network using

 XML and SOAP (for message formats)
 XML Schema (for data types)
 HTTP (for network transport)
 WSDL (to describe Web service interface)

 This allows applications to communicate
independent of
 Hardware platforms
 Operating systems
 Programming languages

TUG Seneca night school program

6Web services and IBM i

Types of web services

 SOAP Simple Object Access Protocol
Request is sent in SOAP document
Returns a SOAP document

 REST REpresentational State Transfer
Request is send in URL
Returns a XML or json* document

 POX Plain old XML
Request is sent in XML document
Returns a XML document

 *JavaScript Object Notation

TUG Seneca night school program

7Web services and IBM i

Web Service

 A Web Service is a special Web Application
A web application gets invoked by sending a request from a browser
A web service is a program that gets invoked by sending a request from

a program

 They are both using the HTTP/HTTPS protocol to receive requests
and return information to the requester.
Allowing to easily access the web service via the internet or intranet

 You can say a web service is a callable program that is accessible from
anywhere.

TUG Seneca night school program

8Web services and IBM i

Evolution of accessing programs (services)
OPM
 Dynamic calls only
 Limited interlanguage

calling

OPM RPG/COBOL/CL
Callable from RPG/CL/COBOL ILE programs

Call any other ILE program

ILE
 Static and dynamic calls
 full interlanguage calling
 Modules and Serviceprograms

Internet/Intranet

Web Service
 Dynamic invocation over the network
 Full interlanguage support

Web ServiceAny program

TUG Seneca night school program

9Web services and IBM i

How does a SOAP Web Service work

Web
Service
requester
(consumer
client)

Send Request with document
 describing the request

 and data

<soapenv:Envelope xmlns:soapenv="http://schemas.....">
 <soapenv:Header/>
 <soapenv:Body>
 <web:NumberToDollars>
 <web:dNum> 095.00 </web:dNum>
 </web:NumberToDollars>
 </soapenv:Body>
</soapenv:Envelope>

Send response back with document
including data

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <m:NumberToDollarsResponse xmlns:m="http://www.dataaccess.com/webservicesserver/">
 <m:NumberToDollarsResult>ninety five dollars</m:NumberToDollarsResult>
 </m:NumberToDollarsResponse>
 </soap:Body>
</soap:Envelope>

Web Service
NumberToDollars

TUG Seneca night school program

10Web services and IBM i

SOAP message details
 A protocol defining how the input/output data of a web service is sent
 Send and receive data in XML documents
 XML Documents follow SOAP standard

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:web="http://www.dataaccess.com/webservicesserver/">

 <soapenv:Header/>

 <soapenv:Body>

 <web:NumberToDollars>

 <web:dNum> 095.00 </web:dNum>

 </web:NumberToDollars>

 </soapenv:Body>

</soapenv:Envelope>

Extra info: authentication, etc

Operation name:
 (program/sub procedure/function name
and parameter data)

TUG Seneca night school program

11Web services and IBM i

Documenting the Web Service

 How do you tell other people about your Web Service
Where is it located
What is the name
What input parameters does it except
What output parameters does it return

 You could create a document, a web page etc

 SOAP Web Services are described in a WSDL file
Web Services Description Language
 XML style to describe a Web Service

TUG Seneca night school program

12Web services and IBM i

WSDL details

 <message name="NumberToDollarsSoapRequest">
 <part name="parameters" element="tns:NumberToDollars"/>
 </message>
 <message name="NumberToDollarsSoapResponse">
 <part name="parameters" element="tns:NumberToDollarsResponse"/>
 </message>
 <portType name="NumberConversionSoapType">
 <operation name="NumberToDollars">
 <documentation>Returns the non-zero dollar amount of the passed number.</documentation>
 <input message="tns:NumberToDollarsSoapRequest"/>
 <output message="tns:NumberToDollarsSoapResponse"/> </operation> </portType>
<binding>
Network protocol used in service </binding>
<service>
A grouping of services/ports (like service program containing multiple procedures)
</service> </definitions>

<definitions>
<types>
 data types the service uses........ </types>

Messages sent and received by service

Operations (programs/procedures) you can
use/call in service

Human readable, but more important tools can work with it easily

TUG Seneca night school program

13Web services and IBM i

Terminology used so far
✔ Web Service
✔ SOAP
✔ WSDL
 UDDI Universal Description, Discovery and Integration

Registry standard for Service Oriented Architecture
A public repository containing web service descriptions

 UDDI did not become accepted as the standard registry for Web
Services

TUG Seneca night school program

14Web services and IBM i

UDDI overview

Chart created by UDDI OASIS Standard community

TUG Seneca night school program

15Web services and IBM i

Why use a Web Service

 Somebody else created something that you want to use
Google services very popular (maps)
Yahoo for business information (show me realtors for that postal code)
Simple conversion routines (metric to)
Currency exchange rates (Dollar to Euro)
Shipment tracking (UPS, FedEx)
Your supplier implemented a web service (orders status inquiry)
You want to give your customers access to data (parts on hand)


Many many other web services that might come in handy

TUG Seneca night school program

16Web services and IBM i

Web 2.0 application using Web Services
 Sample application written in EGL

Web Service to
calculate monthly
payment

YAHOO Web Service to
show mortgage businesses
In the area

GOOGLE Web Service to
show locations on map

TUG Seneca night school program

17Web services and IBM i

Creating and using a Web Service

 Now that you have an understanding what a Web Service is and which pieces
make up a Web Service

 Let's look at
How to create a Web Service
How to use/consume a Web Service

TUG Seneca night school program

18Web services and IBM i

Agenda

 Web Services: What are they? Why use
them?

 Creating a Web Service
Using RPG
Using EGL

 Consuming a web service
Using Web Service Explorer
With EGL
With RPG using EGL or HTTPAPI

TUG Seneca night school program

19Web services and IBM i

Use RPG to create a Web Service

 Write an RPG program or a sub procedure in a service program or use existing
 Use a tool to create a wrapper around the RPG code

Wrapper will create
 The XML definition to handle a request that consumes your Web Service
 The XML definition to send back the response from your Web Service
 A WSDL file that describes your Web Service and its location
 Code to call the RPG program and pass the parameter values from the Web Service

request
 Code to handle the return values from your RPG program and include them in the

response XML document
Deploy your Web Service wrapper to a server

TUG Seneca night school program

20Web services and IBM i

RPG program zipService
 D ZIPSERVICE PR
 D zipin 5a
 D zipout 5a
 D ZIPSERVICE PI
 D zipin 5a
 D zipout 5a
 /Free
 if zipin >= '90001' and zipin <= '96000';
 zipout = '0' ;
 else;
 zipout = '-1';
 endif;
 *inlr = *on;

How it Works – Creating a Web Service with RPG
First: Create program

Zipcode in

Return value
 0 or -1

TUG Seneca night school program

21Web services and IBM i

WSDL
Describes service
And service

interfaces

RPG program zipService

How it Works – Creating a Web Service with RPG
Second: Create the Web Service Wrapper

EAR/WAR with Servlet
To call RPG program

WebService wizard
 Read RPG source
 Create XML for service
 Create jt400 Java servlet to call RPG
 Create Web application WAR file
 Deploy to Tomcat or WAS
 Create WSDL

Zipcode in

Return value
 0 or -1

TUG Seneca night school program

22Web services and IBM i

App Server

WSDL
Describes service
And service

interfaces

RPG program zipService

How it Works – Creating a Web Service with RPG
Test Web Service

WAR with Servlet
To call RPG program

Web Service
explorer
 Read WDSL
 Create front end
 to send request
 with data
 Display response

Request
with XML
document
containing
Zipcode in

Response with Return
value

Zipcode in
Return

value

Call to RPG program

TUG Seneca night school program

23Web services and IBM i

Run the RPG Web Service Input to service

Output from service

Web Service

TUG Seneca night school program

24Web services and IBM i

Creating a Web Service using a 5250 Application

3270/5250
Business Logic

Database Access

RPG/COBOL

Existing Programs

Web 2.0

Web Services
clients

Generate Web Services from HATS
and consume them with requests

and responses

WSDL
Describes service
and service

interfaces
HATS Services

Wizard

Web Service

Input fields on screens map to request parameters
Output fields on screens map to response data

TUG Seneca night school program

25Web services and IBM i

Use EGL to create a Web Service

 Enterprise Generation Language (EGL) ------> now open source !!!!!!!
 Free download available !!!!!!!
 EGL contains a construct called a Service part

Like a function/subprocedure

 In the Deployment Descriptor you tell the generator what kind of service to create
for the logic you code in the Service part
SOAP, REST, or EGL service

TUG Seneca night school program

26Web services and IBM i

Steps for Creating a Web Service with EGL

 StepsSteps
 Create or use existing EGL project or EGL Web project
 Create a new service in EGL
 Tell EGL what kind of service you want to create (deployment descriptor)
 Use EGL to generate Web Service and WSDL

 Deploy the Web ServiceDeploy the Web Service
 Use the Web Service wizard to test the serviceUse the Web Service wizard to test the service

TUG Seneca night school program

27Web services and IBM i

EGL program zipService
service ZipService
function zipServicefunction(zipin
 string in, zipout string out)
 if (zipin >= "90001" && zipin <= "96000");
 zipout = "0";
 else
 zipout = "=-1";
 end
end
end

How it Works – Creating a Web Service with EGL
Create program/service

Create service dialog

Zipcode in Return value
0 or -1

TUG Seneca night school program

28Web services and IBM i

WSDL
Describes service
And service

interfaces

EGL service zipService

How it Works – Creating a Web Service with EGL
Create the Web Service

Web Service
Java servlet
WAR or EAR

Generate

Zipcode in
Return value

 0 or -1

EGL Web Service generation

 Create XML for service
 Create Java servlet
 Create Web application WAR/EAR file
 Deploy to Tomcat or WAS
 Create WSDL

TUG Seneca night school program

29Web services and IBM i

WSDL
Describes service
And service

interfaces

How it Works – Creating a Web Service with EGL
Test Web Service

App Server

Web Service
WAR with Servlet

Web Service Explorer
 Read WDSL
 Create front end
 to send request
 with data
 Display response

Request
with XML
document
containing
Zipcode in

Response with Return
value

TUG Seneca night school program

30Web services and IBM i

Run the EGL Web Service Input to service

Output from serviceWeb Service

TUG Seneca night school program

31Web services and IBM i

Creating a Web Service

 Use any programming language
Java, C, C++ supported via AXIS project
AXIS provides functionality for creating

Web Services wrappers
 Creates proxis for Web Service
 You write the logic, AXIS provides the

Web Services support
 Apache open source project

Overview on the Apache AXIS Web Page
 The well known Apache Axis, and the second
generation of it, the Apache Axis2, are two Web Service
containers that help users to create, deploy, and run Web
Services.

TUG Seneca night school program

32Web services and IBM i

Agenda

 Web Services: What are they? Why use
them?

 Creating a Web Service
Using RPG
Using EGL

 Consuming a web service
Using Web Service Explorer
With EGL
With RPG using EGL or HTTPAPI

TUG Seneca night school program

33Web services and IBM i

Consuming a Web Service using a tool/wizard
 Several tools on the web download and try

SOAPUI very popular

 Use Web Service Explorer, part of RBD
Point Explorer to WSDL
Extracts Input/Output parameter, invocation, and URI information
Prompts for input, sends request, shows response

WSDL
Describes

service
And service

interfaces

TUG Seneca night school program

34Web services and IBM i

EGL consuming a service

EGL Services wizard

WSDL
Describes service
And service

interfaces EGL interface
interface NumberConversionSoapType{@xml
{name="NumberConversionSoapType", }}
function NumberToWords(ubiNum decimal(31) in)
returns(string){@xml {name="NumberToWords"}};
…...

 Using EGL Web Service wizard
Get service description from WSDL
Create interface (like prototype in RPG) from it
 Interface can be invoked like a function to consume Web Service

TUG Seneca night school program

35Web services and IBM i

EGL consuming a service

Web 2.0

EGL interface
NumberConversionSoapType

…..
numConv NumberConversionSoapType{@BindService {} };
result = numConv.NumberToWords(numberInput);
…..

Send request to Web Service via Interface
Get response back from Web Service

App Server

Web Service
WAR with Servlet

TUG Seneca night school program

36Web services and IBM i

RPG consuming Web Service using Java generated by EGL

 Steps
Create EGL program consuming Web Service
Enable property, callable from native Java
Generate Java jar
Copy jar to IBM i
Write RPG program using Java call capability to

consume Web Service
Compile
Try

TUG Seneca night school program

37Web services and IBM i

RPG consuming Web Service using Java generated by EGL

ILE business logic
Prototypes to call

Java

EGL logic

 D* this is the constructor for the EGL/JAVA program wrapper
 D new_wrap PR O EXTPROC(*JAVA : 'programs.Programc+
 D 3Wrapper' : *CONSTRUCTOR)
 D*
 D* call method for wrapper program object
 D* 2 input parameters, response will be in third parameter
 D callmeth PR ExtProc(*JAVA:
 D 'programs.Programc3Wrapper':
 D 'call')
 D parm1 20i 0 value
 D parm2 O Class(*JAVA:'java.math.BigDecimal')
 D parm3 O Class(*JAVA:'java.lang.String')

Wrapper program
Programc3Wrapper
2 input parms
1 response parm

Generated Java program
sends request to Web
Service and gets
response

TUG Seneca night school program

38Web services and IBM i

RPG consuming Web Service using Java generated by EGL

ILE business logic
call to Java

wrapper

EGL logic

D mypgm1 s o class(*JAVA:
D 'programs.Programc3Wrapper')
D response s 50a varying

 mypgm1 = new_wrap();
 // send request to web service
 callmeth(mypgm1: parm1: parm2 :parm3);
 // response from Web Service is stored in parm3
 // method getmyparm3 gets the response value
 response = getbytes(getmyparm3(mypgm1));

Wrapper program
Programc3Wrapper
2 input parms
1 response parm

Generated Java program
sends request to Web
Service and gets response

App Server

Web Service
WAR with

Servlet

TUG Seneca night school program

39Web services and IBM i

Steps for consuming a Web Service using HTTPAPI

 Steps
Download and restore HTTPAPI library
Create XML for request document in RPG

(sounds more difficult than it is)
Write RPG code to call HTTPAPI program
Write RPG sub procedure to get data

from response document
Compile
Try

TUG Seneca night school program

40Web services and IBM i

Use soapUI to extract XML document
 Create a project in soapUI

Use Web Service WSDL
soapUI extracts the XML for request document
Copy/paste XML into RPG and edit XML
Assign string to variable to pass to HTTPAPI

TUG Seneca night school program

41Web services and IBM i

RPG consuming Web Service using HTTPAPI

ILE business logic

 SOAP = '<soapenv:Envelope +
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" +
 xmlns:web="http://www.dataaccess.com/webservicesserver/"> +
 <soapenv:Header/> +
 <soapenv:Body> +
 <web:NumberToWords> +
 <web:ubiNum>' + pchar + '</web:ubiNum> +
 </web:NumberToWords> +
 </soapenv:Body> +
 </soapenv:Envelope> ';

The request XML document
RPG Variable SOAP gets document
 pchar RPG variable contains data

TUG Seneca night school program

42Web services and IBM i

RPG consuming Web Service using HTTPAPI

ILE business logic
Prototypes to use

HTTPAPI

 D http_post_xml...
 D PR 10I 0 EXTPROC('HTTP_URL_POST_XML')
1 D peURL 32767A varying const options(*varsize)
2 D pePostData * value
3 D pePostDataLen 10I 0 value
4 D peStartProc * value procptr
5 D peEndProc * value procptr
6 D peUsrDta * value
7 D peTimeout 10I 0 value options(*nopass)
8 D peUserAgent 64A const options(*nopass:*omit)
9 D peContentType 64A const options(*nopass:*omit)
10 D peSOAPAction 64A const options(*nopass:*omit)

HTTPAPI sends
XML from RPG

Calls sub procedure
with Response
data

The prototype for http_post_xml

TUG Seneca night school program

43Web services and IBM i

RPG consuming Web Service using HTTPAPI

ILE business logic
call to http_post_xml

 rc = http_post_xml
 ('http+

://www.dataaccess.com/webservicesserver/numberconversion.wso'
 : %addr(SOAP) + VARYINGDATAOFFSET
 : %len(SOAP)
 : *NULL
 // Procedure to invoke for response
 : %paddr(MapXmlData)
 // variable with response value
 : %addr(conversionres)
 : HTTP_TIMEOUT
 : HTTP_USERAGENT
 : 'text/xml; charset=UTF-8'
 : '""');

http_post_xml
Sends request
Gets response back

Invoke httpapi

App
Server

 Web Service

TUG Seneca night school program

44Web services and IBM i

RPG consuming Web Service using HTTPAPI

ILE business logic
callback sub

procedure

 P MapXmlData B
 D MapXmlData PI
 D result 52a varying
 D depth 10I 0 value
 D name 1024A varying const
 D path 24576A varying const
 D value 65535A varying const
 D attrs * dim(32767)
 D const options(*varsize)
 /free
 if (name = 'm:NumberToWordsResult');
 result =value;
 endif;

HTTPAPI gets
response
document

Calls sub procedure
with Response
data

Callback sub procedure

Get this name from soapUI

TUG Seneca night school program

45Web services and IBM i

Summary

 RPG developers can
create Web Services on IBM i
consume Web Services on IBM i

 Choose from a variety of tools
Depending on your skills
Depending on your preferences

Yes, you can do it
Come to TUG night school and try it out

TUG Seneca night school program

46Web services and IBM i

IBM Community Sites for Business Developers

ibm.com/developerworks/rational/community/cafe/index.htmlibm.com/developerworks/rational/community/cafe/index.html

TUG Seneca night school program

47Web services and IBM i

	RDI SOA 7.1 + 7.5 Web services and EGL
	Slide 2
	Agenda
	Slide 4
	The Problem: Integration
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Run the web service
	EGL Consuming existing 5250 Applications as services
	Slide 25
	Steps for Creating a Web Service with EGL
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	EGL consuming a service
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	EGL consuming existing i Batch (non-interactive) Applications as services
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	IBM Community Sites for Business Developers
	Slide 47

