SQL on IBM i:
Joins and Aggregate Functions

By Thibault Dambrine

Agenda: All about SQL!

= SQL Standard Joins

= SQL Aggregate Functions

= SQL Cross Join

= SQL Correlated Updates

= SQL Self Joins

= SQL Union Statements

= SQL Data Transformation

= SQL Performance Considerations

SQL "Standard" Joins

= Join or Inner Join
= Left or Right Join or Left/Right Outer Join
= Left or Right Exception Join

Key Point:
* The LEFT or RIGHT statement indicates the "root" or "main" table.
* The table on the other side of the JOIN will be the "joined" table

L ROJ
oJ INNER

or : or
Joln
LEJ REJ

JOIN or INNER JOIN

Most commonly used join

Returns as many rows as there are matches, no more, no
less

Returns values for all columns

LOJ ROJ
or or
LEJ REJ

Two Base Tables for this Presentation

EMP_NBR EMP_NAME BEN_NBR
= Employee
Table: 121 St-even Lee 111
852 Brian Evans 111
1234 John Smith 222
4567 Garth Robson |0
- Beneflts BEN_NBR EMP_BEN_DESC
Table: 111 TOP DENTAL
222 BOTTOM DENTAL
333 NEW DENTAL

INNER JOIN Example: Getting only
the exact key matches

SELECT

EM.EMP NER,

EM.EMP NAME,

EM.BEN NBR

BM.EMP BEN DESC

FROM

EMPLOYEE MASTER EM INNER JOIN BENEFITS MASTER BM
ON EM.BEN NBR = BM.BEN NBR

EM.EMP_NBR | EM.EMP_NAME | EM.BEN_NBR |BM.EMP_BEN_DESC

121 Steven Lee 111 TOP DENTAL

852 Brian Evans 111 TOP DENTAL

1234 John Smith 222 BOTTOM DENTAL

LEFT JOIN or LEFT OUTER JOIN

= Second Most commonly used join

= Useful when you need to see ALL from the
LEFT table and what ever can be found on
the right side

= The “Not Found” data on the right is padded
with NULL or DEFAULT Values

L R
oJ INNER 0J

or : or
Joln
LEJ REJ

LOJ Example: Getting the matches,
the data from the left table and defaults
from the right table if no values found

Note the use of IFNULL, which
can replace un-found values with
a pre-determined default (as
EM.EMP_NBR, opposed to a NULL)

EM.EMP NAME,

EM.BEN NBR

IFNULL (BM.EMP BEN DESC, 'Benefits not yet allocated')
FROM

EMPLOYEE MASTER EM LEFT OUTER JOIN BENEFITS MASTER BM
ON EM.BEN NBR = BM.BEN NBER

SELECT

LEFT JOIN or LEFT OUTER JOIN

LOJ Results WITH IFNULL default override

EMP_NBR | EMP_NAME BEN_NBR EM.EMP_BEN_DESC

121 Steven Lee 111 TOP DENTAL

852 Brian Evans 111 TOP DENTAL

1234 John Smith 222 BOTTOM DENTAL

4567 Garth Robson 0 Benefits Not Yet Allocated

LOJ Results WITHOUT IFNULL default override

EMP_NBR | EMP_NAME BEN _NBR EM.EMP_BEN_DESC
121 Steven Lee 111 TOP DENTAL

852 Brian Evans 111 TOP DENTAL

1234 John Smith 222 BOTTOM DENTAL
4567 Garth Robson 0

RIGHT JOIN or RIGHT OUTER JOIN

Seldom used join

Mirror image of LOJ, same rules: Bring ALL
data from the right table, whatever can be
found on the left

LOJ ROJ
INNER

or : or
Joln
LEJ REJ

10

ROJ Example: Getting the matches, the
data from the right table and defaults
from the left table if no values found

SELECT
EM.EMP NBR,

EM.BEN NBR,

FROM

Note:
Right Outer Join is the only change from

previous example

EM.EMP NAME,

IFNULL (BM.EMP BEN DESC, 'Benefits not yet allocated')

EMPLOYEE MASTER EM RIGHT OUTER JOIN BENEFITS MASTER BM
ON EM.BEN NBR = BM.BEN NBR

11

RIGHT JOIN or RIGHT OUTER JOIN

Result

ROJ Results has NO IFNULL default overrides on the
EMPLOYEE table, only on the BENEFITS TABLE
The NULLS WILL SHOW.

EMP_NBR | EMP_NAME BEN NBR |EM.EMP_BEN DESC
121 Steven Lee 111 TOP DENTAL

852 Brian Evans 111 TOP DENTAL

1234 John Smith 222 BOTTOM DENTAL

NEW DENTAL

12

Multiple LEFT OUTER JOIN Method

= One-to-many Left Outer Join can be a
strong performer — AS LONG AS ALL
TABLES ARE INDEXED!

INSERT INTO PRODUCT BIG PICTURE

SELECT PRD.*, INV.*, SLS.*, LDT.*

FROM PRODUCT MASTER PRD
LEFT OUTER JOIN INVENTORY LVL INV
ON PRD.PRD# = INV.PRD#

LEFT OUTER JOIN SALES SLS
ON PRD.PRD# = SLS.PRD#

LEFT OUTER JOIN LEAD TIME LDT
ON PRD.PRD# = LDT.PRD#

13

LEFT EXCEPTION JOIN

LEJ
Returns data LOJ ROJ
from the left
) orxr or
table, minus
LEJ REJ

any keys
connecting to
the right

= Returns only the rows from the left table that
do not have a match in the right table

= Much more powerful than using "NOT IN" or
"NOT EXISTS"

14

Two Base Tables for this Presentation

An Employee
Table:

A Benefits
Table:

EMP_NBR EMP_NAME BEN_NBR
121 Steven Lee 111

852 Brian Evans 111

1234 John Smith 222

4567 Garth Robson 0
BEN_NBR EMP_BEN_DESC

111 TOP DENTAL

222 BOTTOM DENTAL

333 NEW DENTAL

15

LEFT EXCEPTION JOIN

Returns only the rows from the left table that do not have a
match in the right table

Example: What Employees DO NOT have Benefit Plans?

SELECT

EM.EMP NBR,

EM.EMP NAME,

EM.BEN NBR

FROM EMPLOYEE EM LEFT EXCEPTION JOIN BENEFITS BN
ON EM.BEN NBR = BN.BEN NBR

EMP_NBR EMP_NAME BEN NBR
4567 Garth Robson 0

16

RIGHT EXCEPTION JOIN

LOJ
or
LEJ

ROJ

oxr

REJ

Returns only
data from the
right side,
minus any
keys that
match on the
left table

= Returns only the rows from the RIGHT table that
do not have a match in the left table

= Much more powerful than using "NOT IN" or

"NOT EXISTS"

17

Two Base Tables for this Presentation

An Employee
Table:

A Benefits
Table:

EMP_NBR EMP_NAME BEN_NBR
121 Steven Lee 111

852 Brian Evans 111

1234 John Smith 222

4567 Garth Robson 0
BEN_NBR EMP_BEN_DESC

111 TOP DENTAL

222 BOTTOM DENTAL

333 NEW DENTAL

18

RIGHT EXCEPTION JOIN

Returns only the rows from the right table that do not have a

match in the left table

Example: What Benefits plans ARE NOT USED by employees?

SELECT
EN.BEN NER,

BEN.EMP BEN DESC

FROM EMPLOYEE EM RIGHT EXCEPTION JOIN BENEFITS BN
ON EM.BEN NBR = BN.BEN NBR

BEN_NBR EMP_BEN_DESC
333 NEW DENTAL

19

Exception Join Practical Use:
Spotting KEY Differences

Useful for audits
Spot key differences between data sets:
= Useful for integrities
= Wil pick up exactly "what the differences are
= Can be used both ways, for example:
= Vendor without PO's” (need to identify)
VENDOR_FILE Left exception Join PO_FILE
= PO's without Vendor” (problem!)
PO_FILE Left exception Join VENDOR_FILE

20

SQL Aggregate Functions

= GROUP BY Construct
s Distinction Between WHERE and HAVING

Partition 1

Partition 2

Partition 3

Aggregating Data with GROUP BY

= Get aggregated values, for a specified group
= Note the "Select” and the “Group by” parameters are identical

SELECT CITY,
COUNT (*) ORDERS COUNT,

SUM (ORDER VALUE) ORDERS VALUE,
AVG (ORDER VALUE) AVERAGE,

MIN (ORDER VALUE) MIN ORDER,
MAX (ORDER VALUE) MAX ORDER

FROM ORDERS
GROUP BY CITY
ORDER BY AVERAGE

CITY NAME Ofcugﬁlf\;:_ ORDERS VALUE AVERAGE MIN ORDER | MAX ORDER
Edmonton 2324 .00 45646546.00 19641.37 123.00 852.00
Red Deer 3434.00 544696445.00 158618.65 1822.00 5236.00
Calgary 4553.00 834098534.00 183197.56 268.00 7411.00
Banff 2.00 554556.00 277278.00 965.00 1253200

WHERE and HAVING Clauses

= Use WHERE to compare individual row values
= Use HAVING to compare aggregated values

SELECT STORE NAME, STORE PROV,
SUM (SALES) STORE SALES

FROM STORE INFORMATION

WHERE STORE PROV = 'AB'

GROUP BY STORE NAME, STORE PROV

HAVING SUM(SALES) > 1500

STORE NAME STORE_PROV STORE_SALES
Calgary Store AB 3434
Red Deer Store AB 4553
Edmonton Store AB 8522

23

Finding Duplicate Data in a Table

SELECT NPAY.ID, COUNT (*)
FROM NEW PAY NPAY
GROUP BY NPAY.ID
HAVING COUNT (*) > 1

= Will find any duplicated employee ID in nEw Ppay,
and the number of duplicates

= In effect, if the count per ID is more than 1, there

is a duplicate

24

= Cross Join or Cartesian Product (same as "no join criteria”)
= Uses
= Caveats

TABLE-A X TABLE-B

25

CROSS JOIN SYNTAX

= Also known as "CARTESIAN PRODUCT"

= Can be specified with the CROSS JOIN syntax or
by listing two tables without a WHERE clause

= Returns every possible combination of the two
row sets

Syntax:
SELECT * FROM FILEA CROSS JOIN FILEB

Same as.
SELECT * FROM FILEA, FILEB

26

CROSS JOIN or
"CARTESIAN PRODUCT"

Happens when there are no Join Criteria

Returns every possible combination of two

tables’s contents combined

For TABLE_X with X Rows and

TABLE_Y with Y Rows

The Cross Join will return X * Y Rows

27

CROSS JOIN EXAMPLE

EM.EMP_NBR | EM.EMP_NAME BEN_NBR | EM.EMP_BEN_DESC

121 Steve McPhearson 111 TOP DENTAL

852 Brian Evans 222 BOTTOM DENTAL

1234 John Smith

4567 Garth Robson

CROSS JOIN Results

EM.EMP_NBR EM.EMP_NAME BEN_NBR EM.EMP_BEN_DESC
121 Steve McPhearson 111 TOP DENTAL

121 Steve McPhearson 222 BOTTOM DENTAL
852 Brian Evans 111 TOP DENTAL

852 Brian Evans 222 BOTTOM DENTAL
1234 John Smith 111 TOP DENTAL

1234 John Smith 222 BOTTOM DENTAL
4567 Garth Robson 111 TOP DENTAL

4567 Garth Robson 222 BOTTOM DENTAL _

CROSS JOIN or "CARTESIAN PRODUCT"

-> MOST OFTEN CONSIDERED BAD

Is there use for a CROSS-JOIN?

29

Exploring Sales Data with CROSS-JOIN

SELECT SLS.STORE NBR, SLS.PRODUCT NER,
SUM (SLS.QTY SOLD) FROM SALES TR SLS
GROUP BY SLS.STORE NBR, SLS.PRODUCT NBR

Query Above Will return nothing for zero $ products
The query below will show product with zero sales

—

SELECT STR.STORE NBR, PRD.PRODUCT NBR, il‘ftpro duct
SUM (IFNULL (SLS.OTY_SOLD0)) AS TOTALSALES [and

- ore
FROM STORES STR CROSS JOIN PRODUCTS PRD _ Combinations

T

This cross-join will be the root side of the Left Outer Join

LEFT OUTER JOIN SALES TR SLS —
ON SLS.STORE NBR = STR.STORE NBR outer Join to
AND SLS.PRODUCT NBR = PRD.PRODUCT NBR — ?f‘;zacﬁons
GROUP BY STR.STORE NBR, PRD.PRODUCT NBR 30

AccountID | Year Month Month Month Month Month Month Month Month Month Month Month Month
01 02 03 04 05 06 07 08 09 10 11 12
Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount

Account | Year | Month | Month
ID Amount

Pivoting a Table
From
Horizontal to Vertical
Using SQL
CROSS JOIN

H to V Table Pivot using Cross-Join

Pivot a 12-month table From SELECT

HORIZONTAL To VERTICAL by YEAR

Using a CROSS JOIN To a iﬁﬁiﬂm D ,

12-ROW table containing CASE MONTH_VALUE

numbers 1 to 12 [here named | . l i EEB;

' MONTH_NUMERIC' i

Use the CASE statement to pick the D

right value depending on the month WHEN 7 THEN NET 07

processed WHEN 8 THEN NET 08
WHEN 9 THEN NET 09

WHEN 10 THEN NET 10
WHEN 11 THEN NET 11
WHEN 12 THEN NET 12
END
FROM HORIZONTAL

INSERT INTO VERTICAL
(YEAR
ACCOUNT ID
MONTH
NET POSTING)

32

CROSS JOIN MONTH NUMERIC ;

= Updates and Deletes Based on Another Table
= The Double "WHERE" Clause
= Caveats

Updating Data in a Table Using a Correlated
Query (update with join not possible for now)

UPDATE EMPLOYEE EM
SET (EM.PAY SCALE, EM.SALARY) =
(
SELECT NPAY.PAY SCALE, NPAY.SALARY
FROM NEW PAY NPAY

)
WHERE EXISTS

(SELECT '*'
FROM NEW NEWPAY NPAY WHERE NPAY.ID = EM.ID)

= Note the use of two WHERE clauses

= WARNING: Will crash if either files
contain duplicate keys 34

Deleting Data in a Table Using a Correlated
Sub-Select
(only method currently available on DB2 for i)

DELETE FROM EMPLOYEE TABLE EM

WHERE EXISTS

(SELECT '*' FROM RETIREE TABLE RET
WHERE RET.ID = EM.ID)

Note the use of TWO WHERE clauses

35

= Pivoting data from Vertical to Horizontal
= Finding variations for specific values in a journal
= Finding and deleting duplicate values

AccountID | Year Month Month Month Month Month Month Month Month Month Month Month Month

01 02 03 04 05 06 07 08 09 10 11 12

Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount | Amount
000001 2005 16.66 27.22 38.33 49.44 60.55 71.66 82.77 93.88 104.99 15.1 16.11 17.12
Account | Year | Month | Month
ID Amount
000001 2005 | 1 16.66
000001 2005 | 2 27.22
000001 2005 | 3 38.33
000001 2005 | 4 49.44
000001 2005 | 5 60.55

u]
000001 2005 | 6 71.66 PIVOtIng a Iable
| ||

i N From Vertical to Horizontal
000001 2005 | 8 93.88 - b
000001 2005 | 9 104.99 USI ng SQL y
o [[[JOINING A FILE
000001 2005 11 16.11 To ITS E I F
000001 2005 | 12 17.12

37

V to H Table Pivot using Self-Join (1 of 2)

= Principle: Join the table to itself 12 times to spread the
data sideways for 12 months

INSERT INTO HORIZONTAL

(SELECT

YEAR , V01.YEAR)
ACCOUNT 1ID, V01 .ACCOUNT ID)
NET 01 , V01.NET POSTING ,
NET 02 , IFNULL (V02 .NET POSTING, 0)
NET 03 , IFNULL (VO3 .NET POSTING, 0) ,
NET 04 , IFNULL (V04 .NET POSTING, 0) ,
NET 05 , IFNULL (VO5.NET POSTING, 0) ,
NET 06 , IFNULL (V06 .NET POSTING, 0) ,
NET 07 , IFNULL (V07 .NET POSTING, 0) ,
NET 08 , IFNULL (V08 .NET POSTING, 0) ,
NET 09 , IFNULL (V09 .NET POSTING, 0) ,
NET 10 , IFNULL (V10 .NET POSTING, 0) ,
NET 11 , IFNULL (V11.NET POSTING, 0) ,
NET 12 IFNULL (V12 .NET POSTING, 0)

38

V to H Table Pivot using Self-Join (2 of 2)

FROM

LEFT
on

and

LEFT
on

and

LEFT
on

and

LEFT
on

and

LEFT
on

and

LEFT
on

and

LEFT
on

and

VERTICAL V01

OUTER JOIN VERTICAL V02
VO01l. YEAR = V02.
VO0l. ACCOUNT_ID = VO02.

OUTER JOIN VERTICAL V03
V01l. YEAR = VO03.
VO0l. ACCOUNT _ID = VO03.

OUTER JOIN VERTICAL V04
VO01l. YEAR = V04.
VOl. ACCOUNT _ID = V04.

OUTER JOIN VERTICAL V05
V0l. YEAR = VO05.
V0l. ACCOUNT ID = VO5.

OUTER JOIN VERTICAL V06
VOl. YEAR = V06.
V0l. ACCOUNT_ID = VO06.

OUTER JOIN VERTICAL V07
VOl. YEAR = V07.
V01l. ACCOUNT ID = VO7.

OUTER JOIN VERTICAL V08
V01l. YEAR = V08.
V01l. ACCOUNT ID = VO08.

YEAR
ACCOUNT_1ID

YEAR
ACCOUNT_ID

YEAR
ACCOUNT_ID

YEAR
ACCOUNT_ID

YEAR
ACCOUNT_ID

YEAR
ACCOUNT_ID

YEAR
ACCOUNT_ID

LEFT
on

and

LEFT
on

and

LEFT
on

and

LEFT
on

and

WHERE

OUTER JOIN VERTICAL V09
VO01l. YEAR = VO09.YEAR
VOl. ACCOUNT_ID = VO09.ACCOUNT_ID

OUTER JOIN VERTICAL V10
VO01l. YEAR = V10.YEAR
VO0l. ACCOUNT _ID = V10.ACCOUNT_ID

OUTER JOIN VERTICAL V11
V0l. YEAR = V11. YEAR
VOl. ACCOUNT _ID = V11l. ACCOUNT_ID

OUTER JOIN VERTICAL V12
V01l. YEAR = V12. YEAR
VO1l. ACCOUNT ID = V12. ACCOUNT_ID

V01 .MONTH VALUE = 01
and V02.MONTH VALUE = 02
and VO3 .MONTH VALUE = 03
and V04 .MONTH VALUE = 04
and VO5.MONTH VALUE = 05
and V06.MONTH VALUE = 06
and V02.MONTH VALUE = 07
and VO3 .MONTH VALUE = 08
and V04 .MONTH VALUE = 09
and VO5.MONTH VALUE = 10
and VO06.MONTH VALUE = 11
and V06 .MONTH VALUE = 12 ; 39

Find Value Changes in Journal Rows using Self-Join

This technique is useful sniff out variations within a specific field in a file journal. In this case, a margin change.
= Generate OUTFILE FILE TRIRNDLYOQ1, which is simply ensuring the data is ordered by key and timestamp.
= Order is critical. It will ensure we can use the RRN for the next query to get the logical previous row.

Generate OUTFILE FILE TRIRNDLYO01 — Ensure data is in <Value to Monitor> and Timestamp Order:

INSERT INTO TRJRNDLYO1l
SELECT * FROM TR JOURNAL

ORDER BY TRCOMP, TRDIVN, TRDPTN, TRCUSN, TRITEM, TRTIMSTP

Generate OUTFILE FILE TRIRNDLYO02: - Kick out a new row for every <Value to Monitor> change

INSERT INTO TRJRNDLY02

SELECT _
AA.TRCOMP, AA.TRDIVN, AA.TRDPTN, AA.TRCUSN, AA.TRIT!
BB.TRMARGIN MARGIN BEFORE, AA.TRMARGIN MARGIN AFTER
AA.TRMARGIN - BB.TRMARGIN MARGINDIFFERENCE,
char (BB.TRTIMSTP) BEFORE TIMESTAMP,

=M, Values extracted:

4

Lo

char (AA.TRTIMSTP) AFTER TIMESTAMP,

BB.MRPGMNAM, BB.JOBNAME

CURRENT TIMESTAMP CURRENT_TIMESTAMPL
FROM TRJRNDLYO1l AA INNER JOIN TRJRNDLYO1l BB
ON RRN(AA)-1 = RRN(BB)

AND AA.TRCOMP = BB.TRCOMP
AND AA.TRDIVN = BB.TRDIVN
AND AA.TRDPTN = BB.TRDPTN
AND AA.TRCUSN = BB.TRCUSN

AND AA.TRMARGIN <> BB.TRMARGIN

Keys,

Margins before and after + difference
Program that did the change

Data Time Stamps

Current Time Stamp

Program Name

File joined to itself,
current record to previous record

Removing Duplicate Rows In A Table
using a self Correlated Sub-Select

DELETE FROM NEW PAY NPAY1
WHERE RRN (NPAY1l) <
(
SELECT MAX(RRN (NPAY2))
FROM NEW PAY NPAY2
WHERE
NPAY1.ID = NPAY2.ID)

)

= Note the use of the MAX clause

= Note the use of Correlation Names NPAY1 and
NPAY2 - attacking the same table twice with two

different correlated names

41

= UNION (distinct)
= UNION ALL (all data)
= Targeting a DB2 Database File Member in SQL

UNION or UNION ALL

TABLE-A TABLE-B

42

UNION

s Returns data from two sets of data

= The data from both SELECTS must be of the
same format

o NOTE:
UNION RETURNS DISTINCT VALUES ONLY

SELECT EMPLOYEE NUMBER, FIRST NAME, LAST NAME FROM
ALBERTA/EMPLOYEE_TABLE

UNION

SELECT EMPLOYEE NUMBER, FIRST NAME, LAST NAME FROM
NOVASCOTIA/EMPLOYEE TABLE

43

UNION ALL

= Returns data from two sets of data
= [he data from both SELECTS must be of the
same format

= - NOTE: UNION ALL RETURNS
ALL VALUES, REGARDLESS OF DUPLICATES

SELECT EMPLOYEE NUMBER, FIRST NAME, LAST NAME FROM
ALBERTA/EMPLOYEE_TABLE

UNION ALL
SELECT EMPLOYEE NUMBER, FIRST NAME, LAST NAME FROM
NOVASCOTIA/EMPLOYEE TABLE

44

Using UNION with Multi-Member
(conventional iSeries) FILES with SQL

SQL allows the targeting of individual members
with the use of an ALIAS

CREATE ALIAS LIBRARY1l/SLSHST1999
FOR LIBRARY1l/SALESHIST (HST 1999)

CREATE ALIAS LIBRARY1l/SLSHST2000
FOR LIBRARY1l/SALESHIST (HST 2000)

Using UNION to retrieve all members data

SELECT * FROM LIBRARY1/SLSHST1999

UNION ALL
SELECT * FROM LIBRARY1l/SLSHST2000

ORDER BY SALES DATE

45

= Using Case

= (Casting Syntax

= Joining with Cast Keys

= (Casting to int using unreliable Character Data
= (Casting numeric data: Digits vs. Char

Data Transformation: Using CASE

= Evaluated in the order listed
= Note: Will yield a NULL if no ELSE default is specified

SELECT ET.EMPLOYEE NO, ET.FIRST NAME, ET.LASTNAME,

CASE
WHEN ET.YEARS OF SERVICE > 30
THEN 'ELIGIBLE FOR RETIREMENT'
WHEN ET.YEARS OF SERVICE > 15
THEN 'l5 YEARS OR LESS TO GO!'
ELSE 'TAKE A DEEP BREATH!'
END

FROM EMPLOYEE TABLE ET

47

Type Transformation: Using CAST
(Two different syntaxes)

INT to CHAR using the "CAST" operand:
SELECT

CAST (ZIP_NUMBER AS CHAR(5)) CHAR ZIP
FROM FILEB

CHAR to INT using the "CAST" operand:
SELECT
INT (SUBSTRING (TELEPHONE, 1,3)

| | SUBSTRING (TELEPHONE, 5,4)) INT TEL NO
FROM FILEA

48

Joining Tables With
Incompatible Keys using CAST

Joining with Cast Values

Caveat!
SELECT Beware of
LT.FIRST NAME, performance
LT.LAST NAME, hit with
LT .TELEPHONE JOINS using CAST

FROM LOCAL N ~
LT INNER JOIN COMPARE TABLE CT
ON INT (SUBSTRING (LT.TELEPHONE, 1,3)

| | SUBSTRING (LT.TELEPHONE, 5,4))
= CT.TELEPHONE#

49

Dealing with Unreliable Numeric Data
Stored in a Character Column

= Storing Numeric Data in an Character Column is makes for
UNRELIABLE JOINS

= Sometimes, you just have no choice

SELECT * FROM FILEAA AA
LEFT OUTER JOIN FILEBB BB

ON
-—- the case statement will determine if the
CASE WHEN -- values within the column are purely numeric
(-- or not
LOCATE (SUBSTR (AA.CHAR PO NUMBER,1, 1),'0123456789') = 0
OR LOCATE (SUBSTR (AA.CHAR PO NUMBER,2, 1),'0123456789') = 0
OR LOCATE (SUBSTR (AA.CHAR PO NUMBER,3, 1),'0123456789') = 0
OR LOCATE (SUBSTR (AA.CHAR PO NUMBER,4, 1),'0123456789') = 0
OR LOCATE (SUBSTR (AA.CHAR PO NUMBER,5, 1),'0123456789') = 0
THEN O -- default value (there is non-numeric data)
ELSE INT (AA.CHAR PO NUMBER) -- valid numeric value
END

= BB.NUMERIC PO NUMBER

oU

Casting Numeric Data into Characters

= CHAR, DIGITS does not

= With a NUMERIC(5,0) value equal to 00888:

=« CHAR (NUMVAR1) will yield '888'
= Strips leading zeros

= DIGITS(NUMVAR1) will yield '00888'
= Includes leading zeros

51

SQL Performance Considerations

Index Awareness
Correlated Sub-Selects vs Joins
Cascaded Joins

Performance Checklist

Index Awareness

Indexes = Join Performance

Be aware of the instances where DB2 wiill
not use an index

Data type conversions, casts
Formulas in a join

Use of like (or not like) patterns
Use of in (or not in) patterns

53

Correlated Sub-Selects vs. Joins

This correlated sub-query will look for
product ID's that DID have sales

SELECT PRD.ID FROM PRODUCT TBL PRD

WHERE EXISTS

(SELECT SLS.ID FROM SALES TBL SLS
WHERE SLS.ID = PRD.ID)

WHERE EXISTS
Can be re-written as a INNER JOIN:

SELECT PRD.ID FROM PRODUCT TBL PRD
INNER JOIN SALES TBL SLS
ON SLS.ID = PRD.ID

54

Correlated Sub-Selects vs. Joins

This correlated sub-query will look for
product ID's that did NOT have sales

SELECT PRD.ID FROM PRODUCT TBL PRD

WHERE NOT EXISTS

(SELECT SLS.ID FROM SALES TBL SLS
WHERE SLS.ID = PRD.ID)

WHERE NOT EXISTS
Can be re-written as a LEFT EXECPTION JOIN:

SELECT PRD.ID FROM PRODUCT TBL PRD
LEFT EXCEPTION JOIN SALES TBL SLS
ON SLS.ID = PRD.ID

55

Joins vs. Sub-Queries

Rule of thumb:

s Joins are more efficient than
Correlated sub-queries

Exception:

= When the sub-query contains one or
more aggregates and it is not
correlated

56

Joins vs. Sub-Selects — Aggregated

A non-correlated Sub-Select can be the
best way to get the desired results
Example: Find above average sales performance:

SELECT TS1.SALESMAN, TS1.SALES,
FROM TOTAL SALES TS1
WHERE TS1.SALES >

(SELECT AVG (TS2Z.SALES)FROM TOTAL SALES TS2)

N T

The AVERAGE aggregate

function is performed ONLY
ONCE for the entire query

57

Beware of Cascaded Joins:
Break it up! (Slow Join Problem!)

= Proverbial "Forever Processing” Join:
= Files BB, CC, DD are all intertwined!

INSERT INTO FILEA ~
SELECT BB.* FROM FILEB BB
INNER JOIN FILEC CC Join from FILEB to FILEC
ON BBR.KEYB = CC.KEYC > from FILEC to FILED
|
LEFT EXCEPTION JOIN FILED DD VERY EXPENSIVE!
ON CC.KEY2 = DD.WORK KEY »
—_—
LIKE and
WHERE DD.WORK KEY NOT LIKE 'S%DW%' . NOT IN
AND DD.DW ROW TYPE NOT IN ('R','P') Operations

_ EXPENSIVE!
| 58

Performance Considerations:
Break it up! (Solution Part 1)

= Use an INDEXED WORKEFILE to split the
load into manageable chunks

= First, minimize the negative effect of
"LIKE" and "NOT IN"

INSERT INTO DDWORKFILE
SELECT DD.* FROM FILED DD

WHERE DD.WORK KEY NOT LIKE '$DW%'
AND DD.DW ROW TYPE NOT IN ('R','P')

59

Performance Considerations:
Break it up! (Solution Part 2)

= Again, Use an INDEXED WORKFILE to split
the load into manageable chunks

= Second, Create a new intermediate work
file for the other join

INSERT INTO CCWORKFILE

SELECT CC.* FROM FILEC CC

LEFT EXCEPTION JOIN DDWORKFILE DD
ON CC.KEY2 = DD.WORK KEY

60

Performance Considerations:
Break it up! (Solution Part 3)

= The new join will use only keys,
NO OTHER SELECTION CRITERIA

INSERT INTO FILEA

SELECT BB.* FROM FILEB BB

INNER JOIN CCWORKFILE CC
ON BB.KEYB = CC.KEYC

= 3 Simple joins are
= - more efficient
= - quicker to execute
= Than one complicated SQL statement

61

SQL Performance Checklist

Are CAST operations used in joins?

Are LIKE or NOT IN operations used in joins?
Are there Formulas in WHERE clauses?

Is the technique optimum?
« Is Join vs. Correlated sub-query used?
= Are there cascaded joins?

Could the process be broken up in smaller
pieces?

Are there proper INDEXES?
Did you test with life-size samples?

62

Recap For This Presentation:

= Joins
= Inner, Outer, Exception, Union, Union All
»« Updates and Deletes — note the "double WHERE"

= Casting & Case

= Casts and Case can be used in joins (beware of
performance!)

= Performance
= Joins vs correlated sub-selects
« Pay attention to keys indexes, formulas in joins
= Pay attention to cascaded joins

63

Questions

Email: dambrine@tylogix.com

See the SQL Section in www.tylogix.com

mailto:dambrine@tylogix.com
http://www.tylogix.com/

