
3/28/2016

1

Brian May
Solutions Architect

Profound Logic Software

Overview
 Experiences

 Concentrating on “Things” not “Files”

 Complex Data Structures

 Organizing Service Programs and Subprocedures

 Advantages



3/28/2016

2

Learn from my mistakes

My First Procedure
 First RPG Job

 2001

 Packaged software and custom systems

 Old code bases going back to RPGIII

 V4R5

 Learned to write applications in outdated ways



3/28/2016

3

My First Procedure
 Burned out

 Mundane, repetitive work

 Considered quitting/leaving platform

 Created first service program (“GENSRVPGM”)

 Created for generic utilities

 Formatting Data

 String Processing

 No more work to implement than normal

Thinking About “Things”
 Project to build entirely new raw materials system

 Receiving

 Inventory Tracking

 Consumption

 Costing

 All file access and business logic in Service Program

 One service program for whole raw materials system

 Data passed back to program as DS based on record formats

 Worked pretty well, but not as elegant as I thought



3/28/2016

4

Thinking About “Things”
 After several projects, I developed what worked for me

 Object Oriented Mindset

 RPG is not an OO language

 The ILE environment allows us to implement the most 
common elements of OO design

 Treat your data as a “thing”

 Don’t concentrate too much on files at design time

 Identify things and actions



3/28/2016

5

How to Build a “Thing”
 Example: Order Entry System

 Thing: Purchase Order

 Create a Service Program

 1 Thing = 1 Service Program

 Helps with organization

 Prevents accessing “global” data as a shortcut

 Use a binding directory to simplify compiles

 Use a copybook for definitions and prototypes

How to Build a “Thing”
 Define what data your thing has

 Purchase Order

 Key info

 Customer info

 Order Lines

 Create a complex data structure to represent your 
“Thing”

 Don’t try to include everything!  

 Just include the most commonly used info

 Create procedures to work with less used info separately



3/28/2016

6

How to Build a “Thing”

How to Build a “Thing”
 File structure

 New or Existing

 Map it out



3/28/2016

7

How to Build a “Thing”
 Create subprocedures for your actions

 Create procedures to build your “thing” and to save it

 Pass your “Thing” Data Structure as a parameter to any 
procedures with business logic

 Think of the Data Structure as your “instance” of the “thing”

 If procedure will only use/modify one of the underlying 
data structures, it is ok to just pass it

How to Use a “Thing”
 Use “action” subprocedures

 DO NOT access the database files directly
 Defeats the purpose

 Program will actually have no file specs for tables

 Use same names in Displays / Print Files
 Use data structures for all File I/O
 Allows EVAL-CORR to reduce code

 If you call another program that needs the “Thing”, pass it 
as a parameter.  Don’t build the object again in called 
program.



3/28/2016

8

Advantages
 Using this “object” approach will:

 Reduce File I/O

 No need to retrieve the same data in every program or 
procedure

 File I/O is one of the slowest parts of an application

 Reduce Code

 Removing file access from individual programs and 
centralizing it greatly reduces the amount of code

 Much more digestible 



3/28/2016

9

Advantages
 Allows for an extra layer of separation of data from 

program

 Offers more security options

 Removes clutter of business rules from programs

 Business Rule procedures become “black boxes”

 Easy to test

 Once tested and stable, developers don’t have to know or care 
exactly how the business logic works.

 Makes changes of business rules a breeze

Application Modernization



3/28/2016

10

About the Presenter
Brian May is the Solutions Architect for Profound Logic Software.  He 
has also served as webmaster and coordinator for the Young i 
Professionals (http://www.youngiprofessionals.com).  He is a husband 
and father of two beautiful girls.  Brian can be reached at 
bmay@profoundlogic.com


