
3/28/2016

1

Brian May
Solutions Architect

Profound Logic Software

Overview
 Experiences

 Concentrating on “Things” not “Files”

 Complex Data Structures

 Organizing Service Programs and Subprocedures

 Advantages

3/28/2016

2

Learn from my mistakes

My First Procedure
 First RPG Job

 2001

 Packaged software and custom systems

 Old code bases going back to RPGIII

 V4R5

 Learned to write applications in outdated ways

3/28/2016

3

My First Procedure
 Burned out

 Mundane, repetitive work

 Considered quitting/leaving platform

 Created first service program (“GENSRVPGM”)

 Created for generic utilities

 Formatting Data

 String Processing

 No more work to implement than normal

Thinking About “Things”
 Project to build entirely new raw materials system

 Receiving

 Inventory Tracking

 Consumption

 Costing

 All file access and business logic in Service Program

 One service program for whole raw materials system

 Data passed back to program as DS based on record formats

 Worked pretty well, but not as elegant as I thought

3/28/2016

4

Thinking About “Things”
 After several projects, I developed what worked for me

 Object Oriented Mindset

 RPG is not an OO language

 The ILE environment allows us to implement the most
common elements of OO design

 Treat your data as a “thing”

 Don’t concentrate too much on files at design time

 Identify things and actions

3/28/2016

5

How to Build a “Thing”
 Example: Order Entry System

 Thing: Purchase Order

 Create a Service Program

 1 Thing = 1 Service Program

 Helps with organization

 Prevents accessing “global” data as a shortcut

 Use a binding directory to simplify compiles

 Use a copybook for definitions and prototypes

How to Build a “Thing”
 Define what data your thing has

 Purchase Order

 Key info

 Customer info

 Order Lines

 Create a complex data structure to represent your
“Thing”

 Don’t try to include everything!

 Just include the most commonly used info

 Create procedures to work with less used info separately

3/28/2016

6

How to Build a “Thing”

How to Build a “Thing”
 File structure

 New or Existing

 Map it out

3/28/2016

7

How to Build a “Thing”
 Create subprocedures for your actions

 Create procedures to build your “thing” and to save it

 Pass your “Thing” Data Structure as a parameter to any
procedures with business logic

 Think of the Data Structure as your “instance” of the “thing”

 If procedure will only use/modify one of the underlying
data structures, it is ok to just pass it

How to Use a “Thing”
 Use “action” subprocedures

 DO NOT access the database files directly
 Defeats the purpose

 Program will actually have no file specs for tables

 Use same names in Displays / Print Files
 Use data structures for all File I/O
 Allows EVAL-CORR to reduce code

 If you call another program that needs the “Thing”, pass it
as a parameter. Don’t build the object again in called
program.

3/28/2016

8

Advantages
 Using this “object” approach will:

 Reduce File I/O

 No need to retrieve the same data in every program or
procedure

 File I/O is one of the slowest parts of an application

 Reduce Code

 Removing file access from individual programs and
centralizing it greatly reduces the amount of code

 Much more digestible

3/28/2016

9

Advantages
 Allows for an extra layer of separation of data from

program

 Offers more security options

 Removes clutter of business rules from programs

 Business Rule procedures become “black boxes”

 Easy to test

 Once tested and stable, developers don’t have to know or care
exactly how the business logic works.

 Makes changes of business rules a breeze

Application Modernization

3/28/2016

10

About the Presenter
Brian May is the Solutions Architect for Profound Logic Software. He
has also served as webmaster and coordinator for the Young i
Professionals (http://www.youngiprofessionals.com). He is a husband
and father of two beautiful girls. Brian can be reached at
bmay@profoundlogic.com

