
© 2010 IBM Corporation

IBM Power Systems

Toronto Users Group

March 19, 2014

The Science and Art of Indexing on DB2 for i

Speaker Name Linda M Swan

lmswan@us.ibm.com

© 2012 IBM Corporation2

IBM Power Systems

Scenario

Find the first occurrence of “IBM” in a very large book…

What do you do first?

Turn to the index!

in·dex Something that serves to guide, point out,

or otherwise facilitate efficient reference.

© 2012 IBM Corporation3

IBM Power Systems

Creating a useful index

is both a Science and an Art.

© 2012 IBM Corporation4

IBM Power Systems

Agenda

�DB2 for i Indexing Technology

�Query Optimization using Indexes

� Indexing Strategies

�Case Study

Indexing Technology

within DB2 for i

© 2012 IBM Corporation6

IBM Power Systems

DB2 for i

� Two types of indexing technologies are supported
– Radix Index
– Encoded Vector Index

(OmniFind Text Search Server. See reference page)

� Each type of index has specific uses and advantages

� Respective indexing technologies compliment each other

� Indexes can be used for statistics and implementation

� Indexes can provide RRNs and/or data

� Indexes are scanned or probed
– Probe can only occur on contiguous, leading key columns
– Scan can occur on any key column
– Probe and scan can be used together

© 2012 IBM Corporation7

IBM Power Systems

MEDIUMGREEN004

SMALLBLACK003

SMALLRED002

LARGEBLUE001

SIZECOLORITEM_NO

Index Key Columns (ITEM_NO, COLOR, SIZE)

• Probe (key positioning)

with leading, n contiguous

key columns

1

1+2

1+2+3

• Scan (test)

with any other

key columns

2

3

2+3

...WHERE COLOR = 'BLACK‘ AND ITEM_NO = 003

...WHERE SIZE = 'MEDIUM'

...WHERE ITEM_NO = 001 AND SIZE = ‘LARGE’

Using Indexes - Probe v Scan

© 2012 IBM Corporation8

IBM Power Systems

Radix Index

� Index “tree” structure

� Key values are compressed
– Common patterns are stored once
– Unique portion stored in “leaf” pages
– Positive impact on size and depth of the index tree

� Algorithm used to find values
– Binary search
– Modified to fit the data structure

� Maintenance
– Index data is automatically spread across all available disk units
– Tree is automatically rebalanced to maintain an efficient structure

� Temporary indexes
– Considered a temporary data structure to assist the DB engine
– Maintained temporary indexes available in SQE
– Goes away at IPL and at the discretion of the optimizer

© 2012 IBM Corporation9

IBM Power Systems

Radix Index

ADVANTAGES:
� Very fast access to a single

key value
� Also fast for small, selected

range of key values (low

cardinality)
� Provides order

DISADVANTAGES:
� Table rows retrieved in order of key

values (not physical order) which equates
to random I/O’s

� No way to predict which physical index
pages are next when traversing the index
for large number of key values

�Optimizer will add RIO nodes

ROOTROOT

Test
Node

Test
Node MISSMISS

ISSIPPI
002

ISSIPPI
002

OURI
003

OURI
003

IOWA
004

IOWA
004

IZONA
005

IZONA
005

KANSAS
001

KANSAS
001

ARAR

……

ARIZONA005

IOWA004

MISSOURI003

MISSISSIPPI002

ARKANSAS001

Database Table

© 2012 IBM Corporation10

IBM Power Systems

Perform a probe into

the range using the

local selection

value(s)

Perform a probe into

the range using the

local selection

value(s)

Given an index on table EMPLOYEE keyed on STATE...

SELECT *

FROM EMPLOYEE

WHERE STATE = ‘IOWA’
EMPLOYEE Index

EMPLOYEE Table

RRN

Index Probe Example

MISSOURI (003)

...

MISSISSIPPI (013)

MISSISSIPPI (002)

KANSAS (011)

IOWA (010)

IOWA (007)

IOWA (017)

IOWA (004)

...

STATE

IOWA017

ARKANSAS016

WISCONSIN015

WISCONSIN014

MISSISSIPPI013

WISCONSIN012

KANSAS011

IOWA010

NEBRASKA009

NEBRASKA008

IOWA007

MONTANA006

ARIZONA005

IOWA004

MISSOURI003

MISSISSIPPI002

ARKANSAS001

STATERRN

© 2012 IBM Corporation11

IBM Power Systems

Encoded Vector Index (EVI)

� Index for delivering fast data access in analytical and

reporting environments
– Advanced technology from IBM Research
– Used to produce dynamic bitmaps and RRN lists
– Fast access to statistics to improve query optimizer decision making

� Not a “tree” structure

� Can only be created through an SQL interface or Navigator
for i GUI

CREATE ENCODED VECTOR INDEX MySchema.IXName
ON MySchema.TabName(KEY(s))

INCLUDE (SUM(SomeOtherColName));

New in 7.1

Maintained
aggregate

© 2012 IBM Corporation12

IBM Power Systems

Encoded Vector Index (EVI)

5

…

49

50

7

2

9

5

17

1

Vector

0210276050Wyoming

120057534049Wisconsin

…

450320073002Arkansas

2005150050001Arizona

Include

Sum()

Include

Sum()
CountCode

Key Value

Symbol Table

� Symbol table contains information for each distinct key value
- Each key value is assigned a unique 1,2, or 4 byte code (key compression)

- Enhanced in i 7.1 to INCLUDE SUM and COUNT in the

definition

� Rather then a bit array for each distinct key value, use one array of codes

RRN

1

2

3

4

5

6

7

8

9

…

optional

© 2012 IBM Corporation13

IBM Power Systems

.

.

.

.

.

.

.

5

49

49

7

2

9

5

17

1

......

8MISSISSIPPI

7KANSAS

6IOWA

5ILLINOIS

4COLORADO

3CALIFORNIA

2ARKANSAS

1ARIZONA

CodeKey

Symbol Table

Vector Row
1
2
3
4
5
6
7
8
9
...

Bitmap

Set bits in bitmap

or

return RRN list

Scan

vector

for

code(s)

Binary

search

symbol

table

for

key(s)

and

code(s)

Given an EVI on table EMPLOYEE keyed on STATE...

...WHERE STATE = ‘ILLINOIS’

Bitmap / RRN List Example

.

.

.

.

.

.

.

1

0

0

0

0

0

1

0

0

© 2012 IBM Corporation14

IBM Power Systems

SELECT *

FROM EMPLOYEE

WHERE STATE = ‘MINNESOTA'

AND WORKDEPT IN ('B01', C01, 'E01')

Intermediate

RRN list

Intermediate

RRN list

EVI

Final

RRN list

AND
(Merge)

State Workdept

State Workdepts

EVI

3

5

10

15

1000

1005

1007

3001

3050

3

7

10

27

1000

1010

2035

3001

4100

3

10

1000

3001

Index ANDing Example

Represents
all the local
selection

Represents
all the local
selection

© 2012 IBM Corporation15

IBM Power Systems

.

.

.

1

.

.

.

1

0

0

0

0

1

1

0

0

.

.

.

1

.

.

.

0

0

0

0

0

1

0

0

0

.

.

.

1

.

.

.

1

0

0

0

0

0

1

0

0

SELECT *

FROM EMPLOYEE

WHERE STATE = ‘IOWA'

OR WORKDEPT IN ('B01', C01, 'E01')

Intermediate

Bitmap

Intermediate

Bitmap

Radix
EVI

Final

Bitmap

OR

(Merge)

State Workdept

State Workdepts

Represents
all the local
selection

Represents
all the local
selection

Index ORing Example

© 2012 IBM Corporation16

IBM Power Systems

Search / Scan

symbol

table

for

key(s)

and counts

Given an EVI on table EMPLOYEE keyed on STATE...

SELECT COUNT(*) FROM EMPLOYEE WHERE STATE = ‘Wisconsin’;

SELECT COUNT(DISTINCT STATE) FROM EMPLOYEE;

SELECT STATE, SUM(commission), SUM(salary) FROM EMPLOYEE GROUP BY STATE;

EVI Symbol Table Only Example

0210276050Wyoming

120057534049Wisconsin

…

450320073002Arkansas

2005150050001Arizona

Include

Sum()

Include

Sum()
CountCodeKey Value

Symbol Table

© 2012 IBM Corporation17

IBM Power Systems

cardinality The number of distinct elements in a set.

•High cardinality = large distinct number of values

•Low cardinality = small distinct number of values

In general…

•A radix index is best when accessing a small set of rows and the
key cardinality is high

•An encoded vector index is best when accessing a set of rows
and the key cardinality is low

•Understanding the data and query are key

DB2 for IBM i

© 2012 IBM Corporation18

IBM Power Systems

Creating Indexes

� CREATE INDEX SQL statement

CREATE INDEX MY_IX on MY_TABLE (KEY1, KEY2)

� CREATE ENCODED VECTOR INDEX SQL statement

CREATE ENCODED VECTOR INDEX MY_EVI on MY_TABLE (KEY1)

� IBM i Navigator – client based database graphical interface

� IBM Navigator for i – browser based
� CRTPF and CRTLF CL commands

– Keyed access path within the physical file or logical file
– Join logical file

� Primary Key, Foreign Key and Unique Key Constraints
– CREATE TABLE
– ALTER TABLE
– ADDPFCST

© 2012 IBM Corporation19

IBM Power Systems

6.1 Creation of Index with Derived Keys

�Creation of indexes with derived keys via SQL

CREATE INDEX ORDERPRIORITYUPPER ON T1
(UPPER(ORDERPRIORITY) AS UORDERPRIORITY ASC);

CREATE ENCODED VECTOR INDEX YEARQTR ON T1
(YEAR(ORDERDATE) AS ORDYEAR ASC,
QUARTER(ORDERDATE) AS ORDQTR ASC);

- timestamp field an even better example here

CREATE INDEX TOTALEXTENDEDPRICE ON T1
(QUANTITY * EXTENDEDPRICE AS TOTEXTPRICE ASC);

NOTE: There are some restrictions on when indexes can be matched by the optimizer to the query in

6.1

© 2012 IBM Corporation20

IBM Power Systems

6.1 Create Sparse Indexes from SQL

�Support of WHERE clause on SQL create index

CREATE INDEX FASTDELIVER ON T1
(SHIPMODE ASC)
WHERE SHIPMODE = 'NEXTDAYAIR‘
OR SHIPMODE = 'COURIER';

NOTE: Sparse Indexes are NOT used by the query optimizer prior to 7.1

NOTE: DB2 for i Optimizer team recommends a good general purpose indexing strategy over
reliance on the use of sparse indexes

© 2012 IBM Corporation21

IBM Power Systems

When to a use Derived Index?

�Could replace some logical files with SQL indexes for use by RLA
native, high level language programs
– Modernize those objects
– Big logical page size (8K v 64K)

• A keyed LF will share the access path of an SQL created index, but
reverse is not true

�Derived indexes may be useful for
– Case insensitive searches
– Data extracted from a column (i.e. SUBSTR, YEAR, MONTH…)
– Derive Common Grouping columns (i.e. YEAR(ORDERDATE))
– Results of operations (COL1+COL2 , QTY * COST)
– Might be useful to allow index only access in more cases

• Especially with INCLUDE support FOR 7.1

– Reduce table scans, index scans and temporary data
structures

© 2012 IBM Corporation22

IBM Power Systems

EVI’s and Grouping

� EVI with A, B, C key fields and INCLUDE(SUM(D)…)
Create encoded vector index GBEVI02 on T1 (A ,B , C) INCLUDE(SUM(D))

Will be usable for group by ALL Grouping combinations of A,B,C (including Grouping
set combinations)

Example:
SELECT A,B,C, SUM(D) FROM T1 GROUP BY GROUPING SETS((A), (B), (C))
SELECT A,B,C, SUM(D) FROM T1 GROUP BY GROUPING SETS((A), (B))
SELECT A,B,C, SUM(D) FROM T1 GROUP BY GROUPING SETS((A), (C))
SELECT A,B,C, SUM(D) FROM T1 GROUP BY GROUPING SETS((B), (C))
SELECT A,B,C, SUM(D) FROM T1 GROUP BY GROUPING SETS((A,B), (C))
SELECT A,B,C, SUM(D) FROM T1 GROUP BY GROUPING SETS((A,C), (B))
SELECT A,B,C, SUM(D) FROM T1 GROUP BY ROLLUP(A,B,C)
SELECT A,B,C, SUM(D) FROM T1 GROUP BY CUBE(A,B,C)

SELECT A,B,C, SUM(D) FROM T1 GROUP BY (A,B,C)
SELECT A,B, SUM(D) FROM T1 GROUP BY (A,B)
SELECT C SUM(D) FROM T1 GROUP BY (C) /* Or A, Or B */
SELECT SUM(D) FROM T1

• Experiment with the NEW EVI INCLUDE support on DB2 for IBM i for Grouping and Grouping SET Queries
• Create EVI with common GB columns and INCLUDE most commonly used sums
• Always add in COUNT(*) to EVI INCLUDE

• Do this only for GB columns that have relatively small cardinality
• EVIs work best if NOT constantly adding new Key values

© 2012 IBM Corporation23

IBM Power Systems

 CREATE ENCODED VECTOR INDEX swan.GS_EVISales ON .sales (YEAR ASC, QUARTER ASC, MONTH ASC)

 INCLUDE (SUM(QUANTITY) , sum(REVENUE_WO_TAX), count(*)) ;

© 2012 IBM Corporation24

IBM Power Systems

7.1 Index

Enhancements

© 2012 IBM Corporation25

IBM Power Systems

� In-Memory Table/Index (7.1)

� SSD Support for Table/Index (6.1)

CHGLF FILE(MYSCHEMA/IX1) UNIT(*SSD)

� Expanded Optimizer matching of Sparse and
derived Indexes (7.1)

Other Index related enhancements

CHGPF FILE(MYSCHEMA/TAB1) KEEPINMEM(*YES)
CHGLF FILE(MYSCHEMA/IX1) KEEPINMEM(*YES)

CREATE INDEX cust_act ON CUSTIMERS(cust_id) WHERE
activCust=‘Y’

Query Optimization

(using indexes)

© 2012 IBM Corporation27

IBM Power Systems

Cost based optimization dictates that the fastest access method
for a given table will vary based upon selectivity of the query

Number of rows searched / accessed

Few Many

Response

Time Table Scan

Low

High

Probe

Skip Seq

Data Access Methods

© 2012 IBM Corporation28

IBM Power Systems

Query optimization will generally follow this simplified strategy:

�Gather meta-data and statistics for costing

Selectivity statistics
Indexes available for implementation to be costed

Sort the indexes based upon their usefulness

Remove indexes that ‘cover’ other indexes

Environmental attributes that may affect the costs

�Generate default cost

Build an access plan associated with the default plan

�For each index:

Gather information needed specific to this index
Build an access plan based on this index
Cost the use of the index with this access plan
Compare the resulting cost against the cost from the current best plan

Strategy for Query Optimization

?

© 2012 IBM Corporation29

IBM Power Systems

Optimizing indexes will generally follow this simplified strategy:

�Gather list of indexes for statistics and costing

�Sort the list of indexes considering how the index can be used

Local selection
Joining

Grouping
Ordering

Index only access

�One index may be useful for statistics, and another useful for

implementation

Strategy for Query Optimization

?

© 2012 IBM Corporation30

IBM Power Systems

Indexes

Advised

SQE Plan

Cache

Query

Optimization

SQL request

Detailed

DB Monitor

Data

Visual

Explain

Query Optimization Feedback

SQE Plan

Cache
Snapshots

© 2012 IBM Corporation31

IBM Power Systems

Indexing Advice from the Optimizer

� SQE provides index creation advice
– QSYS2/SYSIXADV – system wide, always on
– i Navigator –via visual explain

� SQE
– Robust advice
– Radix and EVI indexes
– Based on all parts of the query

• Local selection
• Join
• Grouping
• Ordering
• Includes OR predicate advice

– Multiple indexes can be advised for the same query
– Some limitations

• Optimizer doesn’t advise EVI with INCLUDE clause
• Optimizer doesn’t advise derived or sparse
• Optimizer doesn’t advise specifically for Index Only Access

© 2012 IBM Corporation32

IBM Power Systems

Index Advised – System wide

-System
-Schema
-Table level

© 2012 IBM Corporation33

IBM Power Systems

Index Advised – System wide

© 2012 IBM Corporation34

IBM Power Systems

Index Advice

If an advised index is created many
times as a MTI and/or used often,
consider making it permanent

If an Index is advised a large number of time.

© 2014 IBM Corporation
35

IBM Power Systems
™

Launch into Show Statements from the Index Advisor

• Show Statements will find queries per the LIVE plan cache based upon

how its launched:

1. Launch Show Statements directly (table match)

2. Launch from Index Advice (exact match)

3. Launch from Condensed Index Advice (fuzzy match)
- Queries which match any ordering or subset of the keys

Index Advisor ���� Show Statements - improved query identification

‘Exact Match’ – going from
Index advice to active

query

© 2014 IBM Corporation
36

IBM Power Systems
™

Improved index advice generation to handle OR predicates

Index OR Advice example
• Should advise indexes over all 3 OR’ed predicate columns
• All 3 advised indexes will have DEPENDENT_ADVICE_COUNT > 0

• Execution with indexes should produce bitmap implementation and register no
new advice

select orderkey, partkey, suppkey,
linenumber, shipmode orderpriority

from ABC_ITEM_fact
where OrderKey <= 10 OR

SuppKey <= 10 OR
PartKey <= 10

optimize for all rows

Visual Explain

Implementation … Advice

Index Advisor indicator of OR advice

© 2012 IBM Corporation37

IBM Power Systems

� Optimizer can request the DB Engine create a temporary index

� Both full and sparse indexes can be created
SQe only create sparse for ordering and for queries running with

live data mode, no QDS (temps) allowed, sparse MTIs are not

reusable

� SQE Temporary indexes (MTIs) are also used for statistics in i7.1

� Temporary indexes are maintained

� SQE
– Temporary indexes are reused and shared across jobs and queries
– Creation is based on “watching” the query requests over time
– Creation is based on optimizer’s own index advice
– Temporary index maintenance is delayed when all associated cursors closed

Maintained Temporary Indexes (MTIs)

© 2012 IBM Corporation38

IBM Power Systems

Index Evaluator – Show Indexes tells us when an index is not used

© 2012 IBM Corporation39

IBM Power Systems

Index Evaluator via Catalog Views

Contains one row for every index that has at least one

partition or member built over a table. If the index is over
more than one partition or member, the statistics include all
those partitions and members.

SYSTABLEINDEXSTAT

Contains one row for every index built over a table partition
or table member. Use this view when you want to see index
information for indexes built on a specified table or set of
tables. The information is similar to that returned via Show
Indexes in IBM i Navigator.

SYSPARTITIONINDEXES

Contains one row for every SQL index. Use this view when
you want to see information for a specific SQL index or set of

SQL indexes. The information is similar to that returned via
Show Indexes in IBM i Navigator.

SYSINDEXSTAT

Lookahead Predicate Generation
Technology

© 2013 IBM Corporation41

Look-ahead Predicate Generation (LPG)

� A strategy to generate local selection predicates for one

table, from one or more other tables

� Using the (generated) local selection predicates, more

options are available for data access and data

processing

� Minimizes the effects of a suboptimal join order

� Opportunity for additional indexing

� Can a have a very positive affect on query performance!

� LPG is an example of query rewrite technique unique to

DB2 for i

�Only available for single
column join conditions!

© 2013 IBM Corporation42

Table1

Key1a

Key1b

Key2a

Key2b

Key2c

Key3a

Key3b

Data_Col1

Data_Col2

…

Table2

Key1a

Key1b

Data_Col_A

…

Table3

Key2a

Key2b

Key2c

Data_Col_B

…

Table4

Key3a

Key3b

Data_Col_C

…

LPG and index

Radix

Radix

Radix

Radix

Radix

Radix

If the relationship between the Fact and the Dimension tables is multi-key

LPG will not be applied

FACT

Dimension

© 2013 IBM Corporation43

Table1

PKey

FKey1

FKey2

FKey3

Data_Col1

Data_Col2

…

Table2

PKey1

Data_Col_A

…

Table3

Pkey2

Data_Col_B

…

Table4

Pkey3

Data_Col_C

…

Indexing on FACT tables

Radix
Radix
Radix

Radix

Radix

Radix

Can be

from

constraints Can be

from
constraints

Radix

© 2013 IBM Corporation44

Table1

PKey

FKey1

FKey2

FKey3

Data_Col1

Data_Col2

…

Table2

PKey1

Data_Col_A

…

Table3

Pkey2

Data_Col_B

…

Table4

Pkey3

Data_Col_C

…

Indexing on FACT tables

EVI
EVI
EVI

Radix

Radix

Radix

Supports

LPG / index
ANDing* *based on selectivity and cardinality

© 2012 IBM Corporation45

IBM Power Systems

Indexing Strategies

© 2012 IBM Corporation46

IBM Power Systems

Nothing, let the system handle it?

Create all advised indexes?

Monitor, analyze, and tune important tables and queries?

© 2012 IBM Corporation47

IBM Power Systems

The goals of creating indexes are:

1. Provide the optimizer the statistics needed to

understand the data, based on the query

2. Provide the optimizer implementation choices,

based on the selectivity of the query

�Accurate statistics means accurate costing

�Accurate costing means optimal query plan

�Optimal query plans means happy customer

DB2 for i

© 2012 IBM Corporation48

IBM Power Systems

Proactive method
• Analyze the data model, application and SQL requests

Reactive method
• Rely on optimizer feedback and actual implementation methods
• Rely on SQE’s ability to auto tune using temporary indexes

Understand the data being queried
• Column selectivity
• Column cardinality

Separating complex queries into individual parts by table
• Selecting
• Joining
• Grouping
• Ordering
• Subquery
• View

The Process of Identifying Indexes

© 2012 IBM Corporation49

IBM Power Systems

Radix Indexes

•Common local selection columns

•Join columns

•Local selection columns + join columns

•Local selection columns + grouping columns

•Local selection columns + ordering columns

Encoded Vector Indexes

•Local selection column for index ANDing/ORing

•Join columns (star or snowflake schema)

• Index only access
•DISTINCT, COUNT, COUNT DISTINCT, SUM()

Note: Columns used with equal conditions are first in key list

Indexing Strategy - Basic Approach

Minimum

Advanced

Requires
knowledge of

query
optimization

and data
lifecycle

© 2012 IBM Corporation50

IBM Power Systems

Indexing Strategy - Examples

Table A

Table B

Table C

Table D

Table
G

Table F
A.Col3 = D.Col3

A.Col2 = C.Col2

A.C
ol1 = B

.C
ol1

D.Col3 = F.Col3

D.Col4 = G.Col4

Table E

B.Col2 = E.Col2

What about
constraints…

?

© 2012 IBM Corporation51

IBM Power Systems

Indexing Strategy - Examples

-- Query 1
SELECT A.CUSTOMER_NO, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358;

CREATE INDEX ORDERS_IX1 ON ORDERS (CUSTOMER_NO);

-- Query 2
SELECT A.CUSTOMER_NO, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358
AND A.ITEM_ID = ‘ABC123YXZ’;

CREATE INDEX ORDERS_IX2 ON ORDERS (CUSTOMER_NO, ITEM_ID);

© 2012 IBM Corporation52

IBM Power Systems

Indexing Strategy - Examples

-- Query 3
SELECT A.CUSTOMER_NO, A.CUSTOMER, A.ORDER_DATE
FROM ORDERS A
WHERE A.CUSTOMER_NO IN (0112358, 1321345, 5891442)
AND A.ORDER_DATE > ‘2005/06/30’
ORDER BY A.ORDER_DATE;

CREATE INDEX ORDERS_IX3a ON ORDERS (CUSTOMER_NO, ORDER_DATE);

CREATE INDEX ORDERS_IX3b ON ORDERS (ORDER_DATE, CUSTOMER_NO);

-- Query 4
SELECT A.CUSTOMER_NO, A.CUSTOMER, A.ORDER_DATE
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358

OR A.ORDER_DATE = ‘2005/06/30’;

CREATE INDEX ORDERS_IX4 ON ORDERS (CUSTOMER_NO);

CREATE ENCODED VECTOR INDEX ORDERS_EVI4

ON ORDERS (ORDER_DATE);

© 2012 IBM Corporation53

IBM Power Systems

Indexing Strategy - Examples

-- Query 5
SELECT A.CUSTOMER_NO, B.CUSTOMER, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A,

CUSTOMERS B,
ITEMS C

WHERE A.CUSTKEY = B.CUSTKEY
AND A.ITEMKEY = C.ITEMKEY
AND A.CUSTOMER_NO = 0112358;

CREATE INDEX ORDERS_IX5a ON ORDERS (CUSTOMER_NO, CUSTKEY);

CREATE INDEX ORDERS_IX5b ON ORDERS (CUSTOMER_NO, ITEMKEY);

CREATE INDEX CUSTOMERS_IX5 ON CUSTOMERS (CUSTKEY);

CREATE INDEX ITEMS_IX5 ON ITEMS (ITEMKEY);

© 2012 IBM Corporation54

IBM Power Systems

Indexing Strategy – EVI INCLUDE example (7.1)

-- Query 6
SELECT YEAR(A.ORDER_DATE),SUM(A.QUANTITY), COUNT(*)
FROM ORDERS A
GROUP BY YEAR(A.ORDER_DATE);

CREATE ENCODED VECTOR INDEX ORDERS_IX6A
ON ORDERS (YEAR(ORDER_DATE))
INCLUDE (SUM(QUANTITY), COUNT(*));

© 2012 IBM Corporation55

IBM Power Systems

Indexing Strategy - Examples

-- Query 7

SELECT YEAR(A.ORDER_DATE),QUARTER(A.ORDER_DATE),

MONTH(ORDER_DATE), SUM(A.QUANTITY), COUNT(*)

FROM ORDERS A

WHERE QUARTER(A.ORDER_DATE) = 4

GROUP BY YEAR(A.ORDER_DATE), QUARTER(A.ORDER_DATE),

MONTH(ORDER_DATE)

ORDER BY YEAR(A.ORDER_DATE),QUARTER(A.ORDER_DATE),

MONTH(ORDER_DATE),

CREATE ENCODED VECTOR INDEX ORDERS_IX6A

ON ORDERS (YEAR(ORDER_DATE), QUARTER(A.ORDER_DATE),
MONTH(ORDER_DATE))

INCLUDE (SUM(QUANTITY), COUNT(*));

© 2012 IBM Corporation56

IBM Power Systems

Indexing Strategy - Examples

If the optimizer feedback indicates:

Full table scan � Create an index on local selection columns

Full index scan � Create an index that allows probe

Temporary index � Create an index on join columns

� Create an index on grouping columns
� Create an index on ordering columns

Hash table � Create an index on join columns

� Create an index on grouping columns

“Perfect”, multiple key column radix indexes are usually best

© 2012 IBM Corporation57

IBM Power Systems

Indexing Strategy – Maintenance

0

20

40

60

80

100

120

IX0 IX1 IX2 IX3 IX4 IX5 IX6 IX7 IX8

Index Maintenance

In general - index maintenance costs grows linearly

© 2012 IBM Corporation58

IBM Power Systems

Indexing Strategy – Maintenance v Query Access

�For best query performance, create the appropriate indexes

�Eliminating table scans and temporary data structures will more
than make up for index maintenance overhead

� Consider the number of indexes when doing high volume batch operations

� Consider parallel index maintenance for INSERTs
– DB2 SMP feature installed and enabled

� Drop indexes when inserting into an empty table

� Consider dropping indexes when adding, changing or deleting more than 50% of
the rows

– Use SMP to create indexes in parallel
– (INSERT + INDEX CREATION) < (INSERT + INDEX MAINT)

© 2012 IBM Corporation59

IBM Power Systems

Indexing Case Study

© 2012 IBM Corporation60

IBM Power Systems

Indexing Strategy – Case Study

Part_Orders
O

Customers
C

Parts
P

O.Partkey = P.Partkey

O.Custkey = C.Custkey

236 MB

1,600,000 rows

322 MB

1,500,000 rows

15 GB

60,000,000 rows

595 LPAR – V5R4
(4) CPUs
10 GB in memory pool
(45) 70 GB disk units

© 2012 IBM Corporation61

IBM Power Systems

Indexing Strategy – Case Study

� 80 SQL requests from a single JDBC connection…

– 2 SETs

– 53 SELECTs

– 15 INSERTs

– 5 UPDATEs

– 15 DELETEs

– 73 via SQE

– 5 via CQE
� Scenarios…

1.No indexes

2.Indexes on join columns only

•4 radix indexes

3.Indexes for selecting, joining,
grouping, ordering

•13 radix indexes

•2 encoded vector indexes

© 2012 IBM Corporation62

IBM Power Systems

Indexing Strategy – Case Study

– Indexes on join columns only
�create index part_orders_ix1 on part_orders (custkey);
�create index part_orders_ix2 on part_orders (partkey);
�create index customers_ix1 on customers (custkey);

�create index parts_ix1 on parts (partkey);

– Index for selecting, joining, grouping, ordering

�create index part_orders_ix3 on part_orders (returnflag, custkey);
�create index part_orders_ix4 on part_orders (shipmode, custkey);
�create index part_orders_ix5 on part_orders (orderkey, linenumber, custkey);
�create index part_orders_ix6 on part_orders (orderkey, custkey);
�create index part_orders_ix7 on part_orders (returnflag, partkey);

�create index part_orders_ix8 on part_orders (shipmode, partkey);
�create index part_orders_ix9 on part_orders (orderkey, linenumber, partkey);
�create index customers_ix2 on customers (customer, custkey);
�create index parts_ix2 on parts (part, partkey);

�create encoded vector index part_orders_evi1 on part_orders (returnflag);
�create encoded vector index part_orders_evi2 on part_orders (shipmode);

© 2012 IBM Corporation63

IBM Power Systems

Indexing Strategy – Case Study

– Sample of SQL Requests

• select *
• from part_orders
• where custkey = 1
• and orderkey = 303008;

• select *
• from part_orders o, customers c
• where o.custkey = c.custkey
• and c.customer = 'Customer#000000001';

• select *
• from part_orders o, customers c, parts p
• where o.custkey = c.custkey
• and o.partkey = p.partkey
• and c.customer = 'Customer#000000001'
• and o.orderkey = 303008
• order by o.linenumber;

Highly Selective

Highly Selective

2way Join

Highly Selective
3way Join

Ordering

© 2012 IBM Corporation64

IBM Power Systems

Indexing Strategy – Case Study

– Sample of SQL Requests

• select distinct shipmode
• from part_orders
• order by shipmode;

• select shipmode, count(*)
• from part_orders
• group by shipmode
• order by 2 desc;

No Local Selection
Distinct

Ordering

No Local Selection
Grouping

Ordering

© 2012 IBM Corporation65

IBM Power Systems

Indexing Strategy – Case Study

– Sample of SQL Requests

• update part_orders set expander = 'UPDATED'
• where custkey = 1;

• delete from part_orders
• where custkey = 1;

• insert into part_orders
• select * from item_subset1;

Searched Update

Highly Selective

Searched Delete

Highly Selective

Select Small Set
And Insert

© 2012 IBM Corporation66

IBM Power Systems

Indexing Strategy – Case Study Results

All IX
Join IX

No IX

Avg Runtime

Max Runtime

Total Runtime

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

20.2651,533.9106,302.275No Indexes

20.9751,249.0815,138.851Join Indexes

0.0762.49323.547All Indexes

Avg TimeMax TimeTotal Time

© 2012 IBM Corporation67

IBM Power Systems

Indexing Strategy – Case Study Results

97

42

15

Table Scans

121719No Indexes

446Join Indexes

000All Indexes

Temp IndexesHash JoinHash GroupBy

All IX
Join IX

No IX

Temp Indexes

Hash Join

Hash Group By
Table Scans

0

20

40

60

80

100

© 2012 IBM Corporation68

IBM Power Systems

Indexing Strategy – Case Study Results

97

42

15

Avg Async Reads

19No Indexes

6Join Indexes

0All Indexes

Avg Sync Reads

All IX
Join IX

No IX

Avg Sync Reads

Avg Async Reads
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

© 2012 IBM Corporation69

IBM Power Systems

Additional Information

�Indexing and Statistics strategies Whitepaper
– http://www-

304.ibm.com/partnerworld/wps/servlet/ContentHandler/servers/enable/site/bi/strategy/in
dex.html

– This Paper was updated to include 7.1 content.

�DB2 for i SQL & Query Performance Tuning and
Monitoring Workshop

– http://www-03.ibm.com/systems/i/software/db2/db2performance.html

SEPT 16-19 2014 in Rochester

�Text Search indexing technology
– https://www-

304.ibm.com/partnerworld/wps/servlet/ContentHandler?contentId=a7QzcNSQBe_4MD
ADcnt&roadMapId=IbOtoNReUYN4MDADrdm&roadMapName=Education+resources+f
or+IBM+i+systems&locale=en_US

© 2012 IBM Corporation70

IBM Power Systems

Summary

�Understand the technology and tools behind indexes on DB2 for i

�Monitor, analyze and create the most beneficial indexes
–Its an iterative process – data can change, queries can change

–Don’t just create. Drop indexes that are not used

�The right set of indexes can:

–significant improve performance of your application

– improve overall system health

© 2012 IBM Corporation71

IBM Power Systems

IBM DB2 for i Center of
Excellence

� Database modernization

� DB2 Web Query

� Database architecture and design

� DB2 SQL performance analysis and tuning

� Data warehousing and Business Intelligence

� DB2 for i education and training

Contact: Tom McKinley mac2@us.ibm.com

IBM Systems and Technology Group

Rochester, MN USA

� Are you experiencing performance problems?

� Are you using SQL?

� Are you getting the most out of DB2 for i?

Need help?

Thank You

© 2012 IBM Corporation73

IBM Power Systems

Trademarks and Disclaimers
Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other

countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered

trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark

Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment, Inc., in the United States, other countries, or both and are used under license

therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

The customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual

environmental costs and performance characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources and

does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly available information,

including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or

any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Some information addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to specific levels of performance,

function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements. The information is presented here

to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any

user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage

configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements

equivalent to the ratios stated here.

Prices are suggested U.S. list prices and are subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your

geography.

Utilizing

