
Intro to Rails

Aaron Bartell
abartell@krengeltech.com

Copyright 2014 Aaron Bartell

*
*

Why is RubyOnRails Hot? BusinessInsider explains well…
 businessinsider.com/heres-why-ruby-on-rails-is-hot-2011-5

“Ruby on Rails is a breakthrough in lowering the barriers of
entry to programming. Powerful web applications that
formerly might have taken weeks or months to develop can
be produced in a matter of days.”

 -Tim O'Reilly, Founder of O'Reilly Media

RubyOnRails.org – Framework home
Guides.RubyOnRails.org/getting_started.html – Quick learning, formal documentation
RailsCasts.com - Excellent video resource for learning about all things Rails
TeamTreehouse.com - Comprehensive Ruby/Rails/HTML/CSS/Javascript training

… an open-source web framework written in the Ruby language that's
optimized for programmer happiness and sustainable productivity. It
lets you write beautiful code by favoring convention over configuration.

- Est 2004 by David Heinemeier Hansson, in 2006 Apple ships with OSX 10.5
“Leopard”
- Separation of concern (model-view-controller, “helpers”, mailers, presenters)
- Generate application components with custom gems and configurations.
- Multiple environments (i.e. dev, test, prod, <custom>)
- ActiveRecord pattern
- i18n features (internationalization) by default when using rails command.
- Includes Rake, a task management tool (i.e. rake db:migrate)

- Unit testing
- Asset pipeline

Really, too many features and benefits to list so let's dive in!

"Rails", "Ruby on Rails", and the Rails logo are registered trademarks of David Heinemeier Hansson. All rights
reserved.

Programming 5250 green screens with RPG was very efficient. Ruby On
Rails (aka Rails) accomplishes the same, but in the modern web world.

http://guides.rubyonrails.org/i18n.html

RubyGems… simplify the process of installing, removing,
updating and managing Ruby libraries and their dependencies.

rubygems.org - Home website
linuxjournal.com/article/8967 – RubyGem history

Rails is a collection of gems
● ActionMailer - Easy email delivery and testing

● ActionPack - Parse request, routing, and controller implementation.

● ActionView - View template lookup, rendering, view "helpers", and more.

● ActiveModel - Allows ActionPack to interact with non-ActiveRecord models.

● ActiveRecord - Connects classes to relational database tables with zero initial

configuration.

● ActiveSupport - Utility classes and standard library extensions that were found useful for

the Rails framework

https://github.com/rails/rails/tree/master/actionmailer
https://github.com/rails/rails/tree/master/actionmailer
https://github.com/rails/rails/tree/master/actionpack
https://github.com/rails/rails/tree/master/actionpack
https://github.com/rails/rails/tree/master/actionview
https://github.com/rails/rails/tree/master/actionview
https://github.com/rails/rails/tree/master/activemodel
https://github.com/rails/rails/tree/master/activemodel
https://github.com/rails/rails/tree/master/activerecord
https://github.com/rails/rails/tree/master/activesupport

Convention Over Configuration (CoC)
“…means that Rails makes assumptions about what you want to do and how
you’re going to do it, rather than requiring you tweak every little thing through
endless configuration files.”
Examples
- View (as in MVC) named same as controller method
- Config files still exist, but the most commonly used defaults are used.
- Things like jquery are integrated by default
guides.rubyonrails.org/active_record_basics.html#convention-over-configuration-in-active-record

Naming of ActiveRecord
Models and Tables.

New App From Scratch
The RAILSNEW command creates a new Rails application, including bundling necessary gems.
RAILSNEW
 VRM(*V200) --version of PowerRuby
 PLACE(*WWW) -- *WWW or *HOME
 RAILSAPP(A2222) -- Name of Rails app. /www/A2222/htdocs/ A2222
 DBUSR(A2222) -- CRTUSRPRF A2222 with below DBPASS
 DBPASS(A2222)
 DBROOT(A2222) -- Run SQL: CREATE COLLECTION A2222_D; CREATE COLLECTION
A2222_T
 HTTPSRV(A2222) -- /www/A2222
 EXTPORT(2222) -- /www/A2222/conf/httpd.conf Listen *:2222
 INTPORT(2202) -- thin start -p 2202

Command bundle install --local is run so all gems are resolved and the Gemfile.lock file is
created.

It also runs the following commands to start Apache and Thin
STRTCPSVR HTTPSVR(A2222) SERVER(*HTTP)
RAILSSVR ACTION(*START)
 APP('/www/A2222/htdocs/A2222')
 VRM(*V200)
 PORT(2202)

Or watch this video:
youtu.be/oc6wEDx8r5o

Application Folder Structure
app
 controllers
 helpers
 models
 views
 layouts
config
 environment.rb
 routes.rb
db
 database.yml
 migrations
lib
log
public
script
test
vendor
 plugins
 gems
 rails

tutorialspoint.com/ruby-on-rails/rails-directory-structure.htm

Database config

development:
 adapter: ibm_db
 username: A2222
 password: A2222
 database: '*LOCAL'
 schema: A2222_D

test:
 adapter: ibm_db
 username: A2222
 password: A2222
 database: '*LOCAL'
 schema: A2222_T

/www/A2222/htdocs/A2222/config/database.yml

File database.yml stores the database
connection information.

*LOCAL declares the Rails app is running on
this machine.

There are additional options to do
encryption of the clear-text password.

Request Cycle
● 10k foot view of a Rails request
● MVC is consistently encouraged

guides.rubyonrails.org/routing.html – Rails Routing from the Outside In

Browser

Rails Dispatch and Routing

Developer's
Controller

Developer's
Model

Developer's
View

1
2

3
4

5

Routing

HTTP Verb Path Action Used for

GET /posts index display list of all posts

GET /posts/new new return HTML form to create new post

POST /photos create create a new post

GET /photos/:id show display a specific post

GET /photos/:id/edit edit return an HTML form for editing a post

PATCH/PUT /photos/:id update update a specific photo

DELETE /photos/:id destroy delete a specific photo

guides.rubyonrails.org/routing.html – Formal Docs
mikewilliamson.wordpress.com/2012/12/12/ruby-redos-the-rails-router – Go deeper

A2233::Application.routes.draw do
 resources :posts
end

app/config/routes.rb

The Rails router recognizes URLs and dispatches them
to a controller's action. It can also generate paths and
URLs, avoiding the need to hardcode strings in your
views.

Adding resources :posts to the
routes.rb file creates the below
paths.

Command:rake routes

Prefix - The route name. It is common to append _path and use it in a view (i.e.
edit_post_path(@post))

Verb - The HTTP verb associated with this path. GET is for retrieval, POST for creation of
things, PUT for updating, and DELETE for destroying.

URI Pattern - Shows the pattern of the URI. The :id declares where the model key will be
used and :format gives the option of specifying .json or .xml

Controller#Action - The controller and action that will receive the request.

Give detail for all routes known to this
Rails application. Great for debugging.

$ rake routes
 Prefix Verb URI Pattern Controller#Action
 posts GET /posts(.:format) posts#index
 POST /posts(.:format) posts#create
 new_post GET /posts/new(.:format) posts#new
edit_post GET /posts/:id/edit(.:format) posts#edit
 post GET /posts/:id(.:format) posts#show
 PATCH /posts/:id(.:format) posts#update
 PUT /posts/:id(.:format) posts#update
 DELETE /posts/:id(.:format) posts#destroy

ActiveRecord

guides.rubyonrails.org/active_record_basics.html – Formal docs
guides.rubyonrails.org/active_record_querying.html – Formal docs

● Map classes to tables, an Object to a Row, or ORM (Object Relation Mapping)
● Database agnostic
● Models exist in app/models
● Table names are plural and class names singular
● Database columns map to attributes (getters and setters) using Ruby's Open Classes
● All tables have an integer primary key, by convention, named id
● Database tables are created with migrations

RPG's extremely simple native database access has always been
the one thing no other language has come close to. Then I tried
Rails' ActiveRecord and fell in love.

Customer.find(1)
select * from customer where id = 1

Customer.find_by_name("Aaron Bartell")
select * from customer where name = 'Aaron Bartell'

Customer.find_by_date_of_birth '1979-04-22'
#select * from customer where date_of_birth = '1979-04-22'

Customer.find_by_name_and_date_of_birth 'Aaron Bartell', '1979-04-22'
select * from customer
where name = 'Aaron Bartell' and date_of_birth = '1979-04-22'

Dynamic Finders

ActiveRecord - DB access examples

guides.rubyonrails.org/active_record_querying.html – Formal docs

Customer.count
#select count(*) as count

Customer.order 'name DESC'
#select * from customer order by name desc

Post.where 'title LIKE ?', 'p%'
#SELECT "posts".* FROM "posts" WHERE (title LIKE 'p%')

User.destroy(12)
--or--
user = User.find(12)
user.destroy

user = User.find(12)
user.first_name = "Bill"
user.last_name = "Gates"
user.save!

user = User.new
user.first_name = "Dave"
user.last_name = "Thomas"
user.save

Create Update Delete

ActiveRecord - Overriding Conventions

class MyModel < ActiveRecord::Base
 self.table_name = 'my_legacy_table'
 self.primary_key = 'my_id'
 self.pluralize_table_names = false
 alias_attribute :CSMPR, :master_proof_report
end

● Rails is very flexible!
● Composite keys? There's a gem for that: github.com/bosko/rmre
● Tables already defined? "Dump" the database to a file using Rails

commands.
● Table names not following plural conventions? Use self.

table_name to alias it.
● Don't like your column names? Use alias_attribute to rename it.

guides.rubyonrails.org/migrations.html#schema-dumping-and-you – Formal docs

ActiveRecord - Associations

guides.rubyonrails.org/association_basics.html – Formal docs

class Patient < ActiveRecord::Base
 has_many :encounters, :class_name => Encounter,
 :foreign_key => 'patient_id'
 has_many :physicians, :through => :encounters,
 :class_name => 'Physician',
 :foreign_key => 'physician_id'
end

class Patient < ActiveRecord::Base
 has_many :encounters
 has_many :physicians, :through => :encounters
end

Why do we need associations between models?
Because they make common operations simpler
and easier in your code.

Use :through for easily traversing the DB.

Now you can do @patient.
physicians

If you were to type out all of
the various things
ActiveRecord does for you
then it would look like this.

Whew! Thanks to CoC!

Migrations

guides.rubyonrails.org/migrations.html – Formal docs

● Think of each migration as being a new 'version' of the database, stored in source
control for historical purposes

● schema.rb contains a full representation of your database
● DB2 table SCHEMA_MIGRATIONS keeps track of which migrations have been run
● Migration files stored in db/migrations
● The change method is for cases where ActiveRecord knows how to reverse the

migration (i.e. add_column reversed would be remove_column)

Migrations are a feature of Active Record that allows you to evolve your
database schema over time. Rather than write schema modifications in
pure SQL, migrations allow you to use an easy Ruby DSL to describe
changes to your tables.

class CreatePosts < ActiveRecord::Migration
 def change
 create_table :posts do |t|
 t.string :title
 t.text :text
 t.timestamps
 end
 end
end

rails generate model Post title:string text:text

class Post < ActiveRecord::Base
end

app/models/post.rb

Database migrations
The rake db:migrate command queries table A2222_D/SCHEMA_MIGRATIONS
(SCHEM00001 below) to learn the most recent migration run against this schema (aka library).
Recognizes 20131031191936_create_posts.rb hasn’t been run and invokes it.

WHAT!?! Shouldn’t it be
POST and not POSTS?

It is a Rails convention to
name tables the plural of
the model they represent.

WRKOBJ A2222_D/*ALL

CREATE TABLE A2222_D.posts(
 id int NOT NULL
 GENERATED ALWAYS AS IDENTITY
 (START WITH 1 INCREMENT BY 1),
 title varchar(255),
 text varchar(255),
 PRIMARY KEY(id)
)

Migrations

guides.rubyonrails.org/migrations.html – Formal docs

rails generate migration UpdateProductPrice

class UpdateProductPrice < ActiveRecord::Migration
 def up
 Products.connection.execute(
 'UPDATE `products` SET `price`= 1.00 WHERE 1'
)
 end
 def down
 # No going back, dude.
 end
end

● Can be used to migrate data and not just structures (see below)
● The up and down methods are one mechanism to do custom reverts or for scenarios

where "there's no going back".
● The rake db:rollback allows you to roll back the most recent migration if you need

to correct a mistake e.g. incorrectly named a column.

Controller

class PostsController < ApplicationController
 before_action :set_post, only: [:show, :edit, :update, :destroy]

 def index
 @posts = Post.paginate(:page => params[:page])
 end

 def show
 end

 def new
 @post = Post.new
 end

 def edit
 end

 private
 def set_post
 @post = Post.find(params[:id])
 end

● The "C" in MVC, sits between model and view
● Files stored in app/controllers
● Gets control of processing when a request comes in
● rails generate scaffold_controller post title:string text:text

A lot of Convention over Configuration
happens in the controller.

Controller - Create

class PostsController < ApplicationController
. . .
 def create
 @post = Post.new(post_params)

 respond_to do |format|
 if @post.save
 format.html {
 redirect_to @post, notice: 'Post was successfully created.' }
 format.json {
 render action: 'show', status: :created, location: @post }
 else
 format.html { render action: 'new' }
 format.json { render json: @post.errors, status: :unprocessable_entity }
 end
 end
 end
 . . .
 private
 def post_params
 params.require(:post).permit(:title, :text)
 end
end

Called when the user submits a form

Controller - Update

class PostsController < ApplicationController
 before_action :set_post, only: [:show, :edit, :update, :destroy]
 . . .
 def update
 respond_to do |format|
 if @post.update(post_params)
 format.html {
 redirect_to @post, notice: 'Post was successfully updated.' }
 format.json { head :no_content }
 else
 format.html { render action: 'edit' }
 format.json { render json: @post.errors, status: :unprocessable_entity }
 end
 end
 end
. . .
 private
 def set_post
 @post = Post.find(params[:id])
 end

 def post_params
 params.require(:post).permit(:title, :text)
 end
end

Called when the user has updated a form for an existing model object

Controller - Destroy

class PostsController < ApplicationController
 before_action :set_post, only: [:show, :edit, :update, :destroy]
. . .
 def destroy
 @post.destroy
 respond_to do |format|
 format.html { redirect_to posts_url }
 format.json { head :no_content }
 end
 end

 private
 def set_post
 @post = Post.find(params[:id])
 end
. . .
end

Called when the user select to destroy a model

class Post < ActiveRecord::Base
 has_many :comments, dependent: :destroy
end

Keep your DB free from orphans with
dependent: :destroy
If the Post is destroyed, the comments
will also be destroyed.

Views and Variables

Request comes into controller and
it prepares instance variables
(@posts) that are made available
to the view.

guides.rubyonrails.org/layouts_and_rendering.html – Formal docs

class PostsController < ApplicationController
 def index
 @posts = Post.all
 end
end

<% @posts.each do |post| %>
 <tr>
 <td><%= post.title %></td>
 <td><%= post.text %></td>
 <td><%= link_to 'Show', post %></td>
 <td><%= link_to 'Edit', edit_post_path(post) %></td>
 </tr>
<% end %>

The view makes use of
variables and could also
do additional method
chaining e.g. post.
comments

views/posts/index.html.erb (snippet)

Partials
● Hides complexity so you can see what is really going on.
● Starts with an underscore e.g. _comment.html.erb

guides.rubyonrails.org/layouts_and_rendering.html#using-partials – Formal docs

<p>
 Commenter:
 <%= comment.commenter %>
</p>
<p>
 Comment:
 <%= comment.body %>
</p>

views/comments/_comment.html.erb

. . .
<%= render @post.comments %>
. . .

views/posts/show.html.erb (snippet)

<%= render "shared/ad_banner" %>
<h1>Products</h1>
<p>Here are a few of our fine products:</p>
...
<%= render "shared/footer" %>

Use many partials from other locations

Form Helpers

guides.rubyonrails.org/form_helpers.html – aaa

<%= form_for(@post) do |f| %>
 <%= f.text_field :title %>
 <%= f.text_field :text %>
 <%= f.submit %>
<% end %>

<form accept-charset="UTF-8" action="/posts/1"
 class="edit_post" id="edit_post_1" method="post">
 <input id="post_title" name="post[title]" type="text" value="post1" />
 <input id="post_title" name="post[text]" type="text" value="post1" />
 <input name="commit" type="submit" value="Update Post" />
</form>

@post = Post.new(params[:post])
@post.save

views/posts/_form.html.erb (snippet)

This is what Rails generates for you. Note the post[title] name of the input field.

Now params[:post] will receive in all parameters that
have post[...] surrounding them. Not only is this a big
time saver but also lessens the visual complexity of the
code (less lines).

Form Validation

guides.rubyonrails.org/active_record_validations.html#displaying-validation-errors-in-views – Formal docs
api.rubyonrails.org/classes/ActiveModel/Errors.html – Formal docs

<%= form_for(@post) do |f| %>
 <% if @post.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@post.errors.count, "error") %>
 prohibited this post from being saved:</h2>

 <% @post.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>
. . .
<% end %>

You can check the current
instance of a model to determine
if there are any errors. Errors can
be manually added by your code
or through things like
validates_precense_of .

class Post < ActiveRecord::Base
 has_many :comments
 validates_presence_of :title
end

Use validates_precense_of to make
sure title is always occupied.

Many Ways to Validate

guides.rubyonrails.org/active_record_validations.html – aaa

Most validations will be in the model and not in the controller. This
took me awhile to get used to.

class Patient < ActiveRecord::Base
 . . .
 validates :bio, length: { maximum: 1000,
 too_long: "%{count} characters is the maximum allowed" }

 validates_inclusion_of :gender, :in => ['male', 'female']

 validates :terms_of_service, acceptance: true
end

Rendering options
● Rails gives HTML and JSON rendering options out of the box
● XML can be added as a rendering option very easily
● JSON gives instant web services! BIG TIME SAVER!

guides.rubyonrails.org/layouts_and_rendering.html – Formal docs

[
 {
 "title":"post1",
 "text":"body1",
 "url":"http://.../posts/1.json"
 },
 {
 "title":"post2",
 "text":"body2",
 "url":"http://.../posts/2.json"
 },
 {
 "title":"my title",
 "text":"my text",
 "url":"http://.../posts/3.json"
 }
]

Output from
192.168.168.76:2222/posts.json

def destroy
 @post.destroy
 respond_to do |format|
 format.html { redirect_to posts_url}
 format.json { head :no_content }
 end
end

The respond_to block allows you to
respond differently depending on the
request format.

Unit Testing

require 'test_helper'

class PostTest < ActiveSupport::TestCase
 test "should not save post without title" do
 post = Post.new
 assert !post.save
 end
end

Command rake test:models will run all model tests

● Woven into the Rails fabric from the beginning
● Skeleton unit tests created when generating models and controllers.
● Simulate browser requests
● Ensure your code adheres to the desired functionality even after major code

refactoring.
● Check out this video to see even more: railscasts.com/episodes/257-request-

specs-and-capybara

Rails makes it super easy to write your tests. It starts by
generating skeleton test code and infrastructure while you are
creating your models and controllers.

guides.rubyonrails.org/testing.html – Formal docs

Fixtures in testing

require 'test_helper'
class PostsControllerTest <
 ActionController::TestCase
 setup do
 @post = posts(:one)
 end

 test "should get edit" do
 get :edit, id: @post
 assert_response :success
 end
. . .
end

Command rake test:controllers will run all
controller tests

● "Fixtures" is a fancy word for sample data.
● Database independent
● One file per model located in tests/fixtures/

one:
 title: My First Post
 body: Body of my 1st post

two:
 title: My Second Post
 body: Body of my 2nd post

test/fixtures/posts.yml

guides.rubyonrails.org/testing.html – Formal docs

Method setup is run before each test and obtains the
named entry from the posts.yml fixture and
instantiates an object from it for later use.

get - Issues an HTTP GET request to /posts/:
id/edit

assert_response - tests whether HTTP 200 OK
was returned.

assert_not_nil assigns - makes sure a post
instance variable was set.

Action Mailer

guides.rubyonrails.org/action_mailer_basics.html – Formal docs
mailcatcher.me – Intercept email in dev and test so it never gets sent. Then you can review.

...allows you to send emails from your application
using mailer classes and views. Mailers work very
similarly to controllers.

app/mailers/user_mailer.rb

● Easily send HTML or plain text emails with attachments
● "Mailers" work very similar to controllers - communicate with models and render a view (html or text).

class UserMailer < ActionMailer::Base
 default from: 'notifications@example.com'

 def welcome_email(user)
 @user = user
 @url = 'http://example.com/login'
 mail(to: @user.email, subject: 'Welcome to My Awesome Site')
 end
end

UserMailer.welcome_email(@user).deliver

Example usage taken from
app/controllers/users_controller.rb when
the create action is called (i.e. creating a user)

Action Mailer - Template

guides.rubyonrails.org/action_mailer_basics.html – Formal docs

<!DOCTYPE html>
<html>
 <head>
 <meta content='text/html; charset=UTF-8' http-equiv='Content-Type' />
 </head>
 <body>
 <h1>Welcome to example.com, <%= @user.name %></h1>
 <p>
 You have successfully signed up to example.com,
 your username is: <%= @user.login %>.

 </p>
 <p>
 To login to the site, just follow this link: <%= @url %>.
 </p>
 <p>Thanks for joining and have a great day!</p>
 </body>
</html>

app/views/user_mailer/welcome_email.html.erb

● Instance variables (i.e. @user and @url) are made available
to the email template just like a view.

Action Mailer - Config

guides.rubyonrails.org/action_mailer_basics.html – Formal docs

config.action_mailer.delivery_method = :smtp
config.action_mailer.smtp_settings = {
 address: 'smtp.gmail.com',
 port: 587,
 domain: 'example.com',
 user_name: '<username>',
 password: '<password>',
 authentication: 'plain',
 enable_starttls_auto: true }

config/environments/$RAILS_ENV.rb (i.e. development.rb)

● Can have a different email configuration for each environment
● Make sure to use an email server that allows the volume of email you

expect (GMail is limited - yes, I learned that the hard way)

Asset Pipeline

● Follows "fast by default" mantra of Rails
● Saves number of GET requests to the server by combining all Javascript files into one
● Minifies source so you aren't sending unnecessary whitespace and comments over the

internet
● Can use the Sass and CoffeeScript and have Rails compile it down to CSS and

Javascript respectively
● Assets can be precompiled before deploying to production

guides.rubyonrails.org/asset_pipeline.html – Formal Docs
coffeescript.org – Learn about CoffeeScript
sass-lang.com – Learn about Sytactically Awesome Style Sheets (SASS)

...provides a framework to concatenate and minify or
compress JavaScript and CSS assets. It also adds the
ability to write these assets in other languages such as
CoffeeScript, Sass and ERB.

app_root/public/assets/*

application-853b7d1526d52c55e2557d2ba0f55806.js
application-853b7d1526d52c55e2557d2ba0f55806.js.gz
application-bb7646d9ffeacfd960a576001feb8b35.css
application-bb7646d9ffeacfd960a576001feb8b35.css.gz

The big long number is a fingerprint. Whenever the
contents change, so does the fingerprint, thus requiring the
browser to download again.

Environments
● Three environments by default: development, test, production
● Each environment can have it's own database in config/database.yml and

configuration file under config/environments
● ENV["RAILS_ENV"] defines the environment
● Add custom environments (i.e. staging - just like production except it maybe uses a

test credit card gateway account vs. a real one)

guides.rubyonrails.org/configuring.html#creating-rails-environments – Formal Docs

Rails environments allow a single app to behave
differently based on the environment it is running in.

config.cache_classes = false

app/config/environments/development.rb Code is reloaded on every request in the
development environment. This slows
down response time but is perfect for
development since you don't have to
restart the web server when you make
code changes.

Good example of needing a custom environment… if your site
takes credit cards it is good to have an environment exactly like
production but doesn't use the production credit card gateway
account. Create a new environment named "staging" to accomplish
this.

i18n (internationalization)

● Problem is complex, so Rails does the following:
○ providing support for English and similar languages out of the box
○ making it easy to customize and extend everything for other languages

● All static strings in Rails framework - e.g. ActiveRecord validation messages - have been
internationalized.

● There are many options Rails offers to solve this challenge - since there are many
different needs (i.e. some desire domain.es and some domain.com?locale=es)

guides.rubyonrails.org/i18n.html – Formal Docs

The Ruby i18n framework provides you with all
necessary means for internationalization/localization of
your Rails application.

One approach, use yaml files
config/locales/en.yml

en:
 hello: "Hello world"

controllers/application_controller.rb

before_action :set_locale

def set_locale
 I18n.locale = params[:locale] ||
 I18n.default_locale
end
def default_url_options(options={})
 { locale: I18n.locale }
end

Sample URL: http://domain.com?locale=pt

Rails Console
● Loads your application into an environment similar to starting the web server
● Use rails c for short
● Uses irb under the covers
● Great for quickly testing, debugging, or just trying things out
● Query the database with ActiveRecord statements (i.e. Post.find(1))

guides.rubyonrails.org/command_line.html#rails-console – aaa

… lets you interact with your Rails
application from the command line.

rails> helper.link_to 'Show', app.post_path(post)
 => "Show"

rails> app.post_path Post.first
 Post Load (0.2ms) SELECT "posts".* FROM . . .
 => "/posts/1"

Example: Learn what a model's route looks like

Example: Learn what a model's link_to looks like

rails> Post.methods.grep /^has/
 => [:has_secure_password, :has_many, :has_one, :has_and_belongs_to_many, :hash]

Example: List all methods of a model object containing "has"

The End!

Aaron Bartell
abartell@krengeltech.com
www.MowYourLawn.com
twitter.com/aaronbartell

