
.

© Copyright IBM Corporation, 2006. All Rights Reserved.
All trademarks or registered trademarks mentioned herein are the property of their respective holders

Creating and using materialized query
tables (MQT) in IBM DB2 for i5/OS

Version 2.0

.

Michael W. Cain

DB2 for i5/OS Center of Competency
ISV Business Strategy and Enablement

September 2006

Table of contents
Abstract..1
Introduction ...1
MQT overview..2
MQT implementation considerations ..3
Analyzing the data model and user queries ...5

Analyzing the application ... 6
Natural environments for MQTs... 9

Designing MQT definitions...9
Designing MQTs that are based on queries .. 11
Designing that is based on data model.. 13
Designing that is based on hierarchies.. 14

Creating MQTs .. 16
CREATE TABLE example ... 16

ALTER TABLE example.. 18
Anatomy of an MQT...19

Populating MQTs...21
Indexes to support MQT creation .. 21
Environment to support MQT creation... 22
Cascading MQT creation ... 22
Strategies and methods for aggregation.. 24
Programmer intervention: Do it yourself .. 27
Employing a parallel process... 29

Testing and tuning MQTs ...30
Enabling MQT support ... 30
Feedback on the query’s use of an MQT... 31
Designing MQT refresh strategies ... 37

Testing and tuning MQT refresh strategies..38
Planning for success ..38
Summary..39
Appendix A: SQL query engine details...40

SQE restrictions ... 40
QAQQINI file options for MQTs ... 41

Appendix B: Resources..42
About the author ...43
Acknowledgments ..43
Trademarks and special notices..44

Creating and using MQTs in DB2 for i5/OS

Abstract
This white paper explains, at length, the process for creating and implementing materialized
query tables (MQT) within the IBM DB2 for i5/OS environment. MQT is a new technology that is
delivered with the version 5 release 3 of this state-of-the-art database. It offers new methods for
enjoying high-performance query processing.

Introduction
On any platform, good database performance depends on good design. And good design includes a solid
understanding of the underlying operating system and database technology, as well as the proper
application of specific strategies.

This is also true for IBM® DB2® for i5/OS, which provides a robust set of technologies that assist with
query optimization and performance.

This paper introduces DB2 for i5/OS materialized query tables (MQT) and looks at their design, creation
and use.

It is strongly recommended that database administrators, analysts and developers who are new to the
IBM System i™ platform, or new to SQL, attend the “DB2 for i5/OS SQL and Query Performance
Monitoring and Tuning” workshop. This course teaches the developer the proper way to architect and
implement a high-performing DB2 for i5/OS solution. The IBM Global Services Web site listed in Appendix
B provides more information about this workshop.

The points discussed in this paper assume some knowledge of DB2 for i5/OS. It is helpful to refer to, and
familiarize yourself with, the information contained in the iSeries Information Center Web site listed in
Appendix B, as well as the following publications:

Prerequisite publications
 DB2 for i5/OS SQL Reference
 DB2 for i5/OS Database Performance and Query Optimization

Redbooks
 Preparing for and Tuning the V5R2 SQL Query Engine on DB2 UDB for iSeries

(SG24-6598-00)
 SQL Performance Diagnosis on DB2 UDB for iSeries
 (SG24-6654-00)

Papers
 Indexing and Statistics Strategies for DB2 for i5/OS
 Star Schema Join Support within DB2 for i5/OS
 DB2 for i5/OS Symmetric Multiprocessing

Links to these as well as other database publications and papers are available at the DB2 for i5/OS portal
listed in the Resources section of this course.

Creating and using MQTs in DB2 for i5/OS

 1

MQT overview
Beginning with IBM i5/OS® V5R3, DB2 for i5/OS supports the creation and implicit use of MQT. In i5/OS
V5R4, there are enhancements to optimize the use of MQTs.

An MQT is a DB2 table that contains the results of a query, along with the query’s definition. An MQT can
also be thought of as a materialized view or automatic summary table that is based on an underlying table
or set of tables. These underlying tables are referred to as the base tables. By running the appropriate
aggregate query one time (by using the base tables and then storing the results so that they are
accessible on subsequent requests), it is possible to enhance data processing and query performance
significantly.

MQTs are a powerful way to improve response time for complex SQL queries, especially queries that
involve some of the following:

 Aggregated or summarized data that covers one or more subject areas
 Joined and aggregated data covering a set of tables
 Commonly accessed subset of rows (that is, a specific piece of data)

In many environments, users often issue queries repetitively against large volumes of data with minor
variations in query predicates. For example:

 Query1 requests the revenue figures for retail-group items sold in the central region each month
of the previous year.

 Query2 requests the revenue figures for retail-group items sold in all regions for the month of
December.

 Query3 requests the revenue figures for a specific item sold in all regions during the past six
months.

The results of these types of queries are almost always expressed as summaries or aggregates by group.
The data required can easily involve millions or billions of transactions that are stored in one or more
tables. For each query, the raw detailed data needs to be processed. Query response times are likely to
be slow, along with high resource utilization.

MQTs were introduced to assist the query optimizer and database engine and to alleviate these
performance issues.

The functionality of an MQT is similar to the role of an index. Both objects provide a path to the data that
the user is normally unaware of. Unlike an index, a user might directly query the MQT just like a table or
view. However, adapting queries to use an MQT directly might not be a trivial exercise for the user.

Though MQTs can be directly specified in a user’s query, their real power comes from the query
optimizer’s ability to recognize the existence of an appropriate MQT implicitly, and to rewrite the user’s
query to use that MQT. The query accesses the MQT (instead of accessing one or more of the specified
tables). This shortcut can drastically minimize the amount of data read and processed (see Figure 1).

Creating and using MQTs in DB2 for i5/OS

 2

DB2 query
optimizer

SQL queries

T1 T2 T3

Base tables

M1

MQT

No query

rewrite

Queryrewrite

Figure 1: DB2 query optimizer

During recent testing in the DB2 for i5/OS Center of Competency, a grouping query that was issued
against a 1.2 billion-row table took seven minutes to run without an MQT. With an MQT available, the
same query took well under 0.7 seconds. If this type of query runs several times a day, the creation of an
MQT saves significant time and resources.

MQT implementation considerations
The implementation of MQTs does not completely eliminate query-performance problems. Some
challenges still include: identifying the best MQTs for the expected SQL requests, maintaining MQTs
when the base tables are updated, recognizing the usefulness of an MQT, and supporting the ability to
actually use the MQT for the query.

DB2 for i5/OS does not automatically maintain the MQTs as the data changes in the base tables.

The decision to implement MQTs depends on answers to the following questions:

 Is it acceptable if the query gets different results depending on whether the query uses the MQT
or the base tables directly?

 What is the acceptable latency of data for the query?
 Are the performance benefits of implementing MQTs significant enough to offset the overhead of

their creation and maintenance?

For online analytical processing (OLAP) and strategic reporting, there can be (and in some cases, needs
to be) some deferral of maintenance (latency), such as end-of-day, end-of-week or end-of-month batch
periods. In such cases, the MQTs do not need to be kept synchronized with the base tables.

For online transaction processing (OLTP) and tactical reporting, any MQT latency might be unacceptable.

Creating and using MQTs in DB2 for i5/OS

 3

It is important to note that significant system resources and time can be required for creating and
refreshing the MQTs when the volume of change activity is high or the base tables are large. This
overhead includes:

 Temporary space when creating and populating the MQTs and associated indexes
 Permanent space to house the MQTs and associated indexes
 Processing resources when creating and maintaining the MQTs and associated indexes
 Time available to create and maintain the MQTs and associated indexes

The general steps for implementing MQT are:

1. Analyze the data model and queries
2. Design and layout the MQT definitions
3. Create and verify the MQTs
4. Populate the MQTs
5. Test and tune the MQTs
6. Design and layout the MQT refresh strategies
7. Test and tune the MQT refresh strategies

In i5/OS V5R3, for the optimizer to consider and use MQTs implicitly, the following PTFs must be installed
or superseded:

 SF99503 (DB Group #4)
 SI17164
 SI17609
 SI17610
 SI17611
 SI17637
 MF34848

All the MQT support is provided in the i5/OS V5R4 base code.

Installing the latest DB2 Group PTF package is recommended before implementing MQTs.

 SF99503 (i5/OS V5R3)
 SF99504 (i5/OS V5R4)

Note: i5/OS is the new name for OS/400 with the release of Version 5 Release 3.

Creating and using MQTs in DB2 for i5/OS

 4

Analyzing the data model and queries
Determining the proper MQT creation and usage strategy relies on analyzing and understating the data
model, the data itself, the queries and the response-time expectations. This analysis can be proactive or
reactive in nature. In practice, both approaches are necessary. The data model-based approach is
generally performed before you have detailed knowledge about the data. The workload-based approach
is performed after gaining experience with the queries.

MQTs provide the most benefit when the queries are frequently aggregating or summarizing similar data
from many rows (see Figure 2).

Relative
effectiveness

or
usefulness

Number of similar
grouping queries

Few Many

High

Low

Figure 2: MQT usage with a number of similar grouping queries

MQTs provide the most benefit when user queries are frequently aggregating or summarizing data that
results in only a few groups. In other words, as the ratio of base-table rows to distinct groups approaches
one-to-one (1:1), the effectiveness of the MQT diminishes (see Figure 3).

Relative
effectiveness

or
usefulness

Number of groupsFew Many

High

Low

Figure 3: MQT effectiveness diminishes as the number of group increases

Furthermore, if the SQL requests select very few rows from the base tables, the data processing required
is low and the query-response time is fast, without the need for presummarization of the data. For
example, a query selects all transactions for Year = 2005, Month = ‘June’ and Customer = ‘John Doe’.
The SQL request causes the database engine to access and aggregate 100 rows out of millions of rows.
There are many customers (that is, there are few rows per group) represented in the data.

Creating and using MQTs in DB2 for i5/OS

 5

On the other hand, a different query selects all transactions for Year = 2005 and Month = June. This
SQL request causes the database engine to access and aggregate hundreds of thousands of rows. Only
a few Year and Month combinations (that is, many rows per group) are represented in the data.

The more often the MQT has to be refreshed, the less effective the MQT might be. This assumes minimal
latency between the base tables and the MQTs. If the MQTs require refreshing less often and there is an
adequate window of time to perform the refreshes, more MQTs can be employed.

Low High

High

Low

Relative
effectiveness

or
usefulness

Frequency of change to
base tables and MQTs

Figure 4: Frequency of change to base and MQT tables

Analyzing the application

Analyzing the data model and application reveals any requirements for grouping and aggregations, along
with common and frequent join criteria. It is important to pay particular attention to implicit or explicit
hierarchies represented in both the data model and the data itself. If there is a need for frequent
aggregations along a hierarchy within a detailed table, MQTs can provide help. For example, a detailed
transaction table has a time hierarchy of Year / Quarter / Month / Week / Day, and these periods are
specified as grouping criteria on a periodic basis. One or more MQTs can be created to support the
queries against the detailed data, especially if these reports run frequently.

Using the SQL Performance Monitors (database monitors), queries can be captured and analyzed. To
help construct the best set of MQTs, the analysis has to be designed to determine frequently queried
tables where grouping or joining criteria are specified. The candidate SQL requests might be longer-
running queries that use a lot of processing or I/O resources. By sorting and grouping the queries based
on the tables accessed, as well as the aggregated columns and the grouping criteria, an MQT can
improve performance. It is also important to understand which query engine (Classic Query Engine [CQE]
or SQL Query Engine [SQE]) optimizes and runs the query request. Only the new (SQE) supports the
optimization and use of MQTs.

Creating and using MQTs in DB2 for i5/OS

 6

An MQT can contain almost any query definition, but the query optimizer supports only a limited set of
functions when matching MQTs to a query. In general, the MQT-matching algorithm includes the following:

 Single table queries
 Join queries
 Subqueries
 WHERE clause
 GROUP BY and optional HAVING clauses
 ORDER BY clause
 FETCH FIRST n ROWS
 Views, common table expressions and nested table expressions
 Unions
 Partitioned tables

Note: i5/OS V5R3 supports only one MQT per query. i5/OS V5R4 allows more than one MQT per query.

The items with limited or no support for matching MQTs to queries include the following:

 Scalar subselects
 User-defined functions (UDFs) and user-defined table functions (UDTFs)
 Recursive Common Table Expressions (RCTE)
 Scalar functions: DBPARTITIONNAME, ATAN2, DIFFERENCE, RADIANS, SOUNDEX,

DECRYPT_BIT, DECRYPT_BINARY, DECRYPT_CHAR, DECRYPT_DB, ENCRYPT_RC2,
GETHINT, DAYNAME, MONTHNAME, INSERT, REPEAT and REPLACE

Furthermore, the SQE must optimize the query definition within the MQT. If the CQE optimizes the MQT
query, then this MQT is not implicitly used for queries. Additional information on MQT query-matching
support is found in the publication: DB2 Universal Database for iSeries Database Performance and Query
Optimization. Appendix B provides a link to this document in the DB2 for i5/OS Publications Information
Center.

The three following code snippets are examples of an MQT, as well as the queries that can, and cannot,
make use of it:

MQT definition:
CREATE TABLE Example_MQT AS

 (SELECT Geography,
 Region,
 Year,
 Month,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,
COUNT(*) AS Rows_per_Group

 FROM Example_Transaction_Table
 GROUP BY Geography,
 Region,
 Year,
 Month)

DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

Creating and using MQTs in DB2 for i5/OS

 7

Queries that are allowed to use the MQT:
SELECT Geography,

 Region,
 Year,
 Month,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,

 FROM Example_Transaction_Table
 GROUP BY Geography,
 Region,
 Year,
 Month;

SELECT Geography,
 Year,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,

 FROM Example_Transaction_Table
 WHERE Year IN (2004, 2005)
 GROUP BY Geography,
 Year;

SELECT Geography,
Region,
AVG(Revenue) AS Avg_Revenue,
AVG(Quantity) AS Avg_Quantity,

 FROM Example_Transaction_Table
 GROUP BY Geography

Region;

Queries that are not allowed to use the MQT:
SELECT Geography,

 Region,
 Year,
 Month,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,

 FROM Example_Transaction_Table
 WHERE Geography LIKE ‘Asia%’ not supported by SQE in i5/OS V5R3
 GROUP BY Geography,
 Region,
 Year,
 Month;

 SELECT E.Geography,
 E.Year,
 E.Quarter, not defined in MQT

 SUM(E.Revenue) AS Total_Revenue,
 SUM(E.Quantity) AS Total_Quantity,

 FROM Example_Transaction_Table E
 WHERE E.Geography IN
 (SELECT M.Geography not supported in i5/OS V5R3
 FROM Geo_Table M
 WHERE M.Geo_Flag = 1)
 GROUP BY E.Geography,
 E.Year,
 E.Quarter;

Creating and using MQTs in DB2 for i5/OS

 8

Natural environments for MQTs

Some application environments are very good candidates for MQT creation and usage. Business
intelligence (BI) and data warehousing (DW) environments lend themselves to the advantages of
presummarized data. BI and DW applications normally store and query vast quantities of data. BI and DW
applications typically catalog and process data along hierarchies such as time and business subject
areas. These hierarchies provide natural opportunities to create MQTs. Furthermore, BI and DW
environments usually have clearly defined latency between the transaction data and the data warehouse
data. For example, adding daily transactions to the data warehouse delivers a natural and consistent
batch of data to the BI system on a periodic basis. Reviewing the hierarchies and the query requests
within the BI environment yields a set of MQTs that can provide tremendous benefit and yet can also be
maintained as part of the DW extract, transform and load (ETL) process.

Star-schema or snowflake-schema data models are specific cases where MQTs can be employed.
Traditionally, the fact table contains detailed facts, or measures, that are rolled up as sums, averages and
counts. The dimension tables contain the descriptive information and this information frequently defines a
hierarchy. For example, the time dimension contains a time hierarchy (year /month / day), the product
dimension contains a product hierarchy (category / product) and the location dimension contains a
location hierarchy (country / region / territory). MQTs can be proactively defined to provide preaggregated
data along the most commonly used levels.

In many cases, a presummarization process already exists and is in use. In these situations, the existing
process can be left as is, or it can be modified to include the use of MQTs and the optimizer’s query
rewrite capability. By altering the existing summary tables to be MQTs, and modifying the queries to
access the base tables, the optimizer can be relied upon to make the decision whether or not to use the
base tables or the MQTs. This decision is based on the estimated runtime cost for each set of data
queried. Using the query optimizer to make this decision allows more flexibility. On the other hand, “if it is
not broken, do not fix it” might be the best strategy for the existing presummarization process.

Designing MQT definitions
With any identified hierarchies or grouping criteria, laying out the MQTs can be straightforward. Using the
previous example of a time hierarchy, assume 100 million rows in a detailed transaction table that
represents three years of evenly distributed data, including the following distinct levels or groups:

 3 years
 12 quarters (3 years x 4 quarters)
 36 months (3 years x 12 months)
 156 weeks (3 years x 52 weeks)
 1095 days (3 years x 365 days)

Executing a query that groups all 100 million rows by the most detailed level (Day), results in only 1095
distinct groups. Yet, continually processing all 100 million rows is time-consuming and resource-intensive.
This is where designing an MQT is valuable.

By providing an MQT that represents all the data grouped by Year / Quarter / Month / Week / Day, the
query optimizer can rewrite the query to use the MQT instead of the base transaction table. Rather than

Creating and using MQTs in DB2 for i5/OS

 9

reading and processing 100 million rows, the database engine reads and processes only 1095 rows from
the MQT, resulting in a significant boost in performance.

It is compelling to create MQTs for the other levels of this time hierarchy (for example, Year / Quarter), but
in this case, there is little benefit to be gained. The query optimizer is able to use the MQT with Year /
Quarter / Month / Week / Day and regroup the MQT rows to build aggregates for Year / Quarter. The
query does not need to match the precompiled results exactly. Reading and processing 1095 rows to
build 12 distinct groups is significantly faster than reading and processing all 100 millions rows of the
transaction table. Yet, accessing an MQT with 12 rows based on Year / Quarter is not that much faster
than accessing an MQT with 1095 rows. In other words, the largest benefit is derived from pre-
aggregating 100 million transactions down to 1095 groups.

If there is a requirement to maintain relatively static figures for each level of the hierarchy, MQTs can be
created for each level. This is one way to take advantage of the data latency inherent in MQTs. In this
case, building the lowest level first and then using that level to build and maintain the next MQT is the
preferred approach. This avoids reading and processing the detailed transactions, thus minimizing the
time and resources required to build the next level of groups. Using the previous example of a time
hierarchy, it is advantageous to create the most detailed level first (Year / Quarter / Month / Week / Day),
and then, at the appropriate time, to use this table to create a higher level (for example, Year / Quarter /
Month) at the appropriate time. This cascading approach minimizes the time and effort to build or refresh
the various levels of MQTs.

Another MQT benefit is the ability to minimize or avoid the joining of rows. Because joining many rows
together can result in high physical I/O operations and potentially long response times, full or partial
denormalization of the data model can significantly increase query performance.

MQTs can be created from one base table or many base tables. When creating MQTs over many base
tables, the MQT is used to denormalize the base tables. This denormalization of data minimizes or
eliminates the need to join rows during query execution (see Figure 5).

MQT based on single table
(no denormalization)

MQT based on two+ tables
(partial denormalization)

MQT based on all tables
(full denormalization)

Figure 5: Creating MQT tables based on single or multiple tables

Creating and using MQTs in DB2 for i5/OS

 10

MQTs can be created with local selection against one or more tables. In this case, the MQT is considered
to be sparse and only reflects the data represented by the specified local selection. Because the MQT
only contains some of the data from the base tables, its overall usefulness might be decreased.
Furthermore, any literals in the MQT definition and in the user’s query are replaced with parameter
markers during optimization. This makes matching the user’s query to the MQT virtually impossible in
i5/OS V5R3. Because of this behavior, it is recommended that you do not use literal values anywhere in
the MQT’s query.

For example, the following query will be rewritten to replace any literals with ?:

SELECT COLOR, SELECT COLOR,
ITEM, ITEM,
‘Text’ ?

FROM My_BIG_Table FROM My_BIG_Table
WHERE COLOR = ‘Red’ WHERE COLOR = ?
AND ITEM = 11235 AND ITEM = ?
AND AMOUNT > 700; AND AMOUNT = ?;

In i5/OS V5R4, additional support provides better matching of sparse MQTs. The MQT optimization
process matches the parameter marker used when creating the MQT to the parameter marker in the local
selection predicate of the user query. The optimizer verifies that the values of the parameter markers are
the same; therefore, the MQT can be used. The MQT-matching algorithm also attempts to match where
the predicates in the MQT and the query are not exactly the same. For example, if the MQT has a
predicate AMOUNT > 500 and the query has the predicate AMOUNT > 700, the MQT contains the rows
necessary to run the query. The MQT is used in the query. The predicate AMOUNT > 700 is left as local
selection in the query. Therefore, column AMOUNT must be defined in the MQT.

Designing MQTs that are based on queries

When designing an MQT for a set of queries, it is important to account for all the columns projected in the
set of queries. Either the MQT must include all the columns used in the queries or must include the join
columns to facilitate gathering the columns through a join to the appropriate tables.

For example, the following grouping query selects rows from a single table that match Year = 2005 and
Month = July, summarizing two columns (Sales and Quantity) and grouping by Year / Month / Day. The
MQT designed to assist this query must contain the projected columns Year, Month, Day, SUM(Sales)
and SUM(Quantity). If one or more columns are omitted, the MQT is not useful.

SELECT Year,
Month,

 Day,
 SUM(Sales) AS Total_Sales,
 SUM(Quantity) AS Total_Quantity

FROM My_Table
WHERE Year = 2005
AND Month = ‘July’
GROUP BY Year,

Month,
Day;

Creating and using MQTs in DB2 for i5/OS

 11

In another example that specifies a join and groups between two tables, either of two MQT designs can
be used to assist this query:

 An MQT that is based only on Trans_Table
 An MQT that is based on both Trans_Table and Date_Table

SELECT D.Year,
D.Month,

 D.Day,
 SUM(T.Sales) AS Total_Sales,
 SUM(T.Quantity) AS Total_Quantity

FROM Trans_Table T,
 Date_Table D

WHERE D.Year = 2005
AND D.Month = ‘July’
AND D.DateKey = T.DateKey
GROUP BY D.Year,

D.Month,
D.Day;

An MQT that is based only on Trans_Table must contain the DateKey, SUM(Sales) and SUM(Quantity)
columns. The query optimizer can specify a join between the MQT and Date_Table, regrouping the rows
based on DateKey.

An MQT that is based on both Trans_Table and Date_Table must project the Year, Month and Day
columns from Date_Table, and the SUM(Sales) and SUM(Quantity) columns from Trans_Table. The
query optimizer can omit the join entirely because the MQT contains all the data required to complete the
query.

In another example that specifies a join between three tables; either of two MQT designs can be
employed to assist this query:

 An MQT that is based on all three tables
 An MQT that is based on two tables.

SELECT C.Customer,
D.Year,
D.Month,

 D.Day,
 T.Sales,
 T.Quantity

FROM Trans_Table T,
 Date_Table D,
 Customer_Table C

WHERE D.Year = 2005
AND D.Month = ‘July’
AND C.Customer = ‘IBM Corporation’
AND D.DateKey = T.DateKey
AND C.CustKey = T.CustKey
ORDER BY Customer, Year, Month, Day;

An MQT that is based on all three Trans_Table, Date_Table and Customer_Table tables must project
the Year, Month and Day columns from Date_Table, Customer from Customer_Table and Sales and
Quantity from Trans_Table. Note that the DateKey and CustKey join columns are specified in the MQT’s
query definition (such as the WHERE clause), but the columns are not part of the MQT data. The query
optimizer can omit the join entirely because the MQT contains all the data required to complete the query.

Creating and using MQTs in DB2 for i5/OS

 12

An MQT that is based on the Trans_Table and Date_Table tables must project the CustKey, Sales and
Quantity columns from Trans_Table and the Year, Month and Day columns from Date_Table. The
CustKey column facilitates joining the MQT to Customer_Table.

An MQT that is based on the Trans_Table and Customer_Table tables must project the DateKey, Sales
and Quantity columns from Trans_Table and the Customer column from Customer_Table. The DateKey
column facilitates joining the MQT to Date_Table.

In both cases, the query optimizer can omit the join between a pair of tables because the MQT contains
all the data required for that pair of tables. The inclusion of the other table’s join column allows the MQT
to be joined to a table not represented in the MQT.

The two-table design, which includes a third table’s join column, allows additional queries to use the
respective MQT. Keep in mind that the number of rows (groups) in the MQT might be larger, based on the
number of distinct join-column values (such as the join column specified in the GROUP BY clause).

Designing MQTs that are based on data models

MQTs designed for a star-schema or snowflake-schema data model can be based either on a single fact
table or on the fact table plus one or more dimension tables. If only the fact table is summarized, then
foreign keys for one or more dimension tables must be included in the MQT. This allows for selection on
the dimension table, joining from the dimension table to MQT, and regrouping of the MQT data.

The grouping on a foreign key column represents the most detailed level within a given dimension. Be
aware that each additional foreign key that is added to the MQT as a grouping column results in more
groups and less effectiveness. For example, if the TimeKey column represents 1095 distinct days or
groups, adding the StoreKey grouping column can multiply the number of distinct groups by the number
of distinct StoresKey values. If 100 stores have a transaction every day, this will result in the
representation of 109,500 distinct groups in the MQT (1095 days x 100 stores) (see Figure 6).

Sales part
MQT

TimeKey
SUM(Sales)
SUM(Quantity)
Rows_per_Group

Time
dim table

TimeKey
Year
Quarter
Month
Week
DayCREATE TABLE SALES_MQT AS

(SELECT s.TimeKey,
SUM(s.Sales) AS Total_Sales,
SUM(s.Quantity) AS Total_Quantity,
COUNT(*) as Rows_per_Group

FROM Sales_Fact s
GROUP BY s.TimeKey)

DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
MAINTAINED BY USER;

Sales
fact table

TimeKey
StoreKey
PartKey

Sales
Quantity

MQT over Sales

Figure 6: MQT over Sales

Creating and using MQTs in DB2 for i5/OS

 13

If the fact table and one or more dimension tables are summarized, this results in an MQT that
denormalizes the data model. By including all the pertinent columns in the MQT, the database engine can
avoid joining the tables together (see Figure 7).

Sales part
MQT

Catagory
Department
SUM(Sales)
SUM(Quantity)
Rows_per_Group

CREATE TABLE SALES_PART_MQT AS
(SELECT p.Catagory,

p.Department,
SUM(s.Sales) AS Total_Sales,
SUM(s.Quantity) AS Total_Quantity,
COUNT(*) as Rows_per_Group

FROM Sales_Fact s,
Part_Dim p

WHERE s.PartKey = p.PartKey
GROUP BY p.Catagory,

p.Department)
DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
MAINTAINED BY USER;

Sales
fact table

TimeKey
StoreKey
PartKey

Sales
Quantity

Part
dim table

PartKey
Catagory
Department
Part

+

MQT over Sales and Part

Figure 7: MQT over Sales and Part

Designing MQTs based on hierarchies

When creating an MQT, selecting the appropriate grouping columns can mean the difference between an
effective or useless MQT. In a data model with implicit or explicit hierarchies defined, the grouping
columns specified can allow the MQT to cover grouping queries at that level or higher in the hierarchy.
This can be a very useful way to minimize the number of MQTs that must be created and maintained,
though still gaining significant benefits from pre-aggregation of data.

In the following example, an MQT that is created with the Year / Quarter / Month / Country /
State_Province / County / City / Category / Department grouping columns can be used for that level or for
any level above (such as Year / Quarter / Country / Category). A query that specifies grouping criteria
below the level defined in the MQT is not eligible to use the MQT (such as Year / Week / Store / Part)
(see Figure 8).

Creating and using MQTs in DB2 for i5/OS

 14

Sales
fact table

TimeKey
StoreKey
PartKey

Sales
Quantity

Time
Dim table

TimeKey
Year
Quarter
Month
Week
Day

Store
Dim table

StoreKey
Country
State_Province
County
City
Store

Part
Dim table

PartKey
Catagory
Department
Part

MQT
Coverage

SELECT...
FROM Sales_Fact, Part_Dim, Store_Dim, Time_Dim
WHERE...
GROUP BY Year, Quarter, Month,
 Country, State_Province, County, City,
 Catagory, Department

Figure 8: MQT coverage

Another case in which an MQT can help regards repeated requests for a distinct list of values where the
set of values is static or changing slowly over time. The following query scans the entire table and returns
a distinct set of location values:

 SELECT DISTINCT Location
 FROM Transaction_Table;

If the table contains millions of rows, the scan and the distinct processing can take a lot of time and
resources. Given that new distinct location values are not added frequently, this is a great opportunity for
an MQT. By creating an MQT that contains the distinct list of location values, the query optimizer can use
the MQT to satisfy the query with little time and resources.

CREATE TABLE Locations_MQT AS
 (SELECT DISTINCT Locations
 FROM Transaction_Table)

DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

Instead of reading and processing millions of rows in the transaction table, tens or hundreds of rows are
read and returned from the MQT. Furthermore, the MQT only needs to be refreshed when a new distinct
location is added or removed.

Although MQTs can be partitioned, the i5/OS V5R3 query optimizer does not implicitly use the MQT.
Designing partitioned MQTs is not recommended in an i5/OS V5R3 environment. In i5/OS V5R4, the
optimizer can rewrite the query when the base table or the MQT is partitioned.

It is important to keep in mind that implementing MQTs is not free. Besides the time and resources to
perform maintenance, the optimization time for a given query increases as the optimizer considers more
and more MQTs. It is best to design a few MQTs that provide the widest coverage and the largest benefit.

Creating and using MQTs in DB2 for i5/OS

 15

In general, consider creating MQTs for the following query classes:

 Queries with grouping and aggregation, where the ratio of rows to groups is high
 Queries with distinct values, where the ratio of rows to distinct values is high
 Queries with joins, where the number of results is high and fan-out occurs

Creating MQT definitions

An MQT definition consists of a query and the attributes that are associated with the population,
maintenance and use of the table. There are two methods for creating an MQT: CREATE TABLE or
ALTER TABLE. Either method can be initiated through an SQL request or by using the graphical
user interface of IBM iSeries Navigator.

The CREATE TABLE method allows for the creation and population of new tables. The ALTER
TABLE method allows an existing table to be modified into an MQT.

CREATE TABLE example

Given an existing table Example_Transaction_Table with the appropriate column definitions:

CREATE TABLE Example_MQT AS
 (SELECT Geography,
 Region,
 Year,
 Month,

 SUM(Revenue) AS Total_Revenue,
 SUM(Quantity) AS Total_Quantity,
 COUNT(*) AS Rows_per_Group

 FROM Example_Transaction_Table
 GROUP BY Geography,
 Region,
 Year,
 Month)

DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

Creating and using MQTs in DB2 for i5/OS

 16

To create a new MQT by using iSeries Navigator – Database (Figure 9):

1. Navigate to and open a Schema.
2. Right-click Tables.
3. Select New Materialized Query Table.

Figure 9: Create a new MQT using iSeries Navigator - Database

This brings up the dialogs to specify the MQT attributes and definition.

Creating and using MQTs in DB2 for i5/OS

 17

ALTER TABLE example

Given an existing Example_Summary_Table table with the appropriate column definitions:

ALTER TABLE Example_Summary_Table
 ADD MATERIALIZED QUERY

 (SELECT Geography,
 Region,
 Year,
 Month,

 SUM(Revenue) AS Total_Revenue,
 SUM(Quantity) AS Total_Quantity,

 COUNT(*) AS Rows_per_Group
 FROM Example_Transaction_Table
 GROUP BY Geography,
 Region,
 Year,
 Month)
 DATA INITIALLY DEFERRED

REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

To alter an existing table to become a new MQT using iSeries Navigator – Database:

1. Navigate to and open a Schema.
2. Open Tables and right-click a specific table.
3. Select Definition and select the Materialized Query Table tab (see Figure 10).

Figure 10: Alter existing table to become a new MQT using iSeries Navigator - Database

This brings up the dialog to register the table as an MQT and specify the MQT attributes and definition.

Creating and using MQTs in DB2 for i5/OS

 18

Anatomy of an MQT

Whether or not you are familiar with MQTs, it is important to understand the anatomy of the SQL
statement used to create an MQT in DB2 for i5/OS. Different clauses control the population and
maintenance of MQTs, and some functionality is not yet supported (see Figure 11).

CREATE TABLE -MQT name- AS

(SELECT -grouping columns-
 -aggregate/summary columns-
FROM -table(s)
WHERE -selection columns-
GROUP BY -grouping columns-
ORDER BY -ordering columns-)

DATA INITIALLY IMMEDIATE
DATA INITIALLY DEFERRED

REFRESH DEFERRED
REFRESH IMMEDIATE

ENABLE QUERY OPTIMIZATION
DISABLE QUERY OPTIMIZATION

MAINTAINED BY USER
MAINTAINED BY SYSTEM

Data is not inserted into the MQT when it is created

Data is inserted into the MQT when it is created

Data in the MQT can be refreshed at any time
using the REFRESH TABLE statement

MQT is maintained by the user with
INSERT, DELETE, UPDATE, or REFRESH TABLE

MQT can be used for query optimization

MQT cannot be used for query optimization
but the MQT can be queried directly

Query that defines and populates MQT

Not currently supported

Not currently supported

Figure 11: Anatomy of an MQT

With the REFRESH DEFERRED and MAINTAINED BY USER clauses, DB2 does not automatically keep
the MQTs synchronized with the base tables. When the base tables change, there can be a difference
between the contents of the MQTs and the base tables. This difference represents the data latency.

The use of specific MQT-naming convention is helpful for quick identification during analysis and
administration. Consider placing MQT somewhere in the table name.

When laying out the materialized query definition, it is a good practice to specify all the columns that are
considered additive facts or measures. At a minimum, these columns need to be used with the SUM
function. As appropriate, other functions such as AVG, MIN, MAX and COUNT can be specified.
Providing these columns and functions might allow the MQT to be more widely considered and used.

The number of rows per group provides the query optimizer with additional ways to take advantage of the
MQT (for example, determining averages by using summations). It is always a good practice to provide
the function COUNT(*) in the SELECT clause of the MQT definition. If expecting to calculate the average
of null able columns, (for example, AVG(null able column) in the query), COUNT(null able column)
must be provided in the MQT, not just a COUNT(*).

Creating and using MQTs in DB2 for i5/OS

 19

SELECT Year,
Month,

 Day,
SUM(Sales) AS Total_Sales,

 SUM(Quantity) AS Total_Quantity,
 COUNT(*) AS Rows_per_Group

FROM My_Table
GROUP BY Year,

Month,
Day;

When an MQT is defined, the following select statement restrictions apply:

 The select statement cannot contain a reference to another MQT or to a view that refers to an MQT.
 The select statement cannot contain a reference to a declared global temporary table, a table in

QTEMP, a program-described file or a non-SQL logical file in the FROM clause.
 The select statement cannot contain a reference to a view that contains an invalid item for an MQT.
 The select statement cannot contain an expression with a DataLink or a distinct type that is

based on a DataLink where the DataLink is FILE LINK CONTROL.
 The select statement cannot contain a result column that is a not an SQL data type, such as

binary with precision, DBCS-ONLY or DBCS-EITHER.

When an MQT is defined with the ENABLE QUERY OPTIMIZATION attribute, the following additional
select-statement restrictions apply:

 It must not include any special registers.
 It must not include any non-deterministic or external action functions.
 The ORDER BY clause is allowed, but is only used by REFRESH TABLE. It might improve the

locality of the data reference in the MQT.

Additional information on MQT-creation support can be found in the publication DB2 Universal Database
for iSeries SQL Reference. Appendix B provides a link to the DB2 for i5/OS Publications Information
Center where you can find this manual.

When creating MQTs, the actual calculation and population of data can occur as part of the object
creation request, or anytime after creation. If the DATA INITIALLY IMMEDIATE attribute is specified, the
MQT population is initiated as part of the creation phase. If the DATA INITIALLY DEFERRED attribute is
specified, the MQT population is not done. If the data is initially deferred, the calculation and population
can be initiated by using the REFRESH TABLE statement, or the process can be initiated and controlled
by the programmer. By deferring, the user can determine the best time and mechanism for calculating
and populating the MQT.

When altering tables to be MQTs, the original table can be empty or fully populated. When altering an
existing table that contains data, it is the user’s responsibility for the integrity and accuracy of the data.

Prior to populating the MQTs, it is advantageous to verify whether the query optimizer will consider using
the MQTs instead of the base tables. A simple method for doing this verification is to analyze the query
plan for a few queries. The iSeries Navigator – Visual Explain tool can be used to explain the query. If the
query optimizer replaces the base tables with the MQT, the MQT is shown in place of one or more base
tables in the query plan drawn by Visual Explain. An example of such a query plan is shown later, in the
“Testing and Tuning Materialized Query Tables” section of this paper. If the query optimizer rejects the
MQT, further analysis and redesign can be done prior to MQT population.

Creating and using MQTs in DB2 for i5/OS

 20

Populating MQTs
Calculation and population of the MQT data is a time- and resource-intensive exercise because of the fact
that creation of MQTs normally requires accessing all the data in the base tables and aggregating column
data over potentially many groups.

Creating an MQT might result in reading and processing millions or billions of rows.

Whether the aggregation is under the control of the database engine or the programmer, the query that is
used to populate the MQT must be tuned.

Indexes to support MQT creation

Prior to the creation of MQTs, providing the proper indexes on the base tables is a critical success factor.
The following guidelines need to be employed when analyzing the MQT’s query:

 Create radix and encoded vector indexes for any local selection columns.
 Create radix indexes for all join columns.
 Create radix indexes for all grouping columns.

For this CREATE MQT example:

CREATE TABLE Example_MQT AS
 (SELECT Geography,
 Region,
 Year,
 Month,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,
COUNT(*) AS Rows_per_Group

 FROM Example_Transaction_Table
 GROUP BY Geography,
 Region,
 Year,
 Month)

DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

Build the following index:

CREATE INDEX Example_Transaction_Table_IX1
 ON Example_Transaction_Table
 (Geography, Region, Year, Month);

This provides the query optimizer and database engine with statistics on the grouping columns and
provides an index for implementation, if needed.

Creating and using MQTs in DB2 for i5/OS

 21

For this CREATE MQT example:

CREATE TABLE SALES_PART_MQT AS
 (SELECT p.Catagory,
 p.Department,
 SUM(s.Sales) AS Total_Sales,
 SUM(s.Quantity) AS Total_Quantity,
 COUNT(*) as Rows_per_Group
 FROM Sales_Fact s,
 Part_Dim p
 WHERE s.PartKey = p.PartKey
 GROUP BY p.Catagory,
 p.Department)

DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
MAINTAINED BY USER;

Build the following indexes:

CREATE INDEX Sales_Fact _IX1
ON Sales_Fact

 (PartKey);

CREATE INDEX Part_Dim _IX1

ON Part_Dim
 (PartKey);

CREATE INDEX Part_Dim _IX2

ON Part_Dim
 (Catagory, Department);

This provides the query optimizer and database engine with statistics on the joining and grouping
columns and provides indexes for implementation, if needed.

Environment to support MQT creation

Providing a proper runtime environment is also important when aggregating large data sets as fast as
possible. If minimizing the time to create and populate the MQT is important, the aggregation process
needs to be run in an environment that provides as much processor resource as possible and a large
memory pool. The MQT-population process must be allowed to run an isolated process, if possible.
Setting the parallel degree to *MAX for the job that aggregates the data and populates the MQT allows
the query optimizer to consider all the memory in the job’s pool. During run time, the database engine can
then be as aggressive as possible with the I/O tasks. The *MAX parallel degree also allows the query
optimizer to consider running the MQT query with symmetric multiprocessing (SMP), provided that the
DB2 SMP feature is installed on the system or logical partition (LPAR). To allow the query to complete
sooner, SMP trades resources for time (for example, more resources are used in a given unit of time).

Cascading MQT creation

When creating multiple MQTs for a given hierarchy (such as Year / Month / Day), the base tables might
be continually queried. A faster approach is to take advantage of the previously aggregated data; using it
as the basis for the next MQT in the hierarchy. This minimizes the time and resources required to
aggregate the next level of data in the hierarchy. The MQT that represents the lowest level or most
detailed data is created first (Year / Month / Day), followed by the next level (Year / Month), followed by
the last level (Year) (see Figure 12).

Creating and using MQTs in DB2 for i5/OS

 22

Schema

MQT1

Aggregated
data

Base tables

Detailed
data

MQT2

Aggregated
data

Select
group
insert

Select
group
insert

MQT3

Aggregated
data

Select
group
insert

Figure 5: Cascading MQT creation

Given that MQT definitions cannot be based on other MQTs, the process of cascading the MQT creations
involves some programmer intervention. That is to say, the MQT definitions must reference the base
tables but the data used to population the MQT is from a previously created MQT.

Figure 13 shows the general steps to create MQTs in a cascading fashion:

1. Create the initial MQT in the hierarchy and populate it from the base tables.
2. Create the next MQT in the hierarchy with the DATA INITIALLY DEFERRED attribute and

populate this MQT from MQT created in step number 1.
3. Create the next MQT in the hierarchy with the DATA INITIALLY DEFERRED attribute and

populate this MQT from the MQT created in number 2.

CREATE TABLE My_MQT_YMD AS
(SELECT Year,

Month,
Day,
SUM(Sales) AS Total_Sales,
SUM(Quantity) AS Total_Quantity,
COUNT(*) as Rows_per_Group

FROM My_Table
GROUP BY Year,

 Month,
 Day)
DATA INITIALLY IMMEDIATE
REFRESH DEFERRED
MAINTAINED BY USER;

1

CREATE TABLE My_MQT_YM AS
(SELECT Year,

Month,
SUM(Sales) AS Total_Sales,
SUM(Quantity) AS Total_Quantity,
COUNT(*) as Rows_per_Group

FROM My_Table
GROUP BY Year,

 Month)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

CREATE TABLE My_MQT_Y AS
(SELECT Year,

SUM(Sales) AS Total_Sales,
SUM(Quantity) AS Total_Quantity,
COUNT(*) as Rows_per_Group

FROM My_Table
GROUP BY Year)

DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER;

Select from
previous MQT

and insert

Select from
Base Table
and insert

2

3

Figure 6: Steps to creating MQTs in a cascading fashion

For this process to be successful, all the MQT definitions in the hierarchy must reference and be based
on the same detailed tables.

Creating and using MQTs in DB2 for i5/OS

 23

Strategies and methods for aggregation

The query optimizer has two basic methods of grouping data for aggregation:

 Grouping with an index (permanent or temporary)
 Grouping with a hash table

Each method has its own requirements, characteristics and advantages. Understanding and anticipating
the use of either method determines whether programmer intervention is required to speed up the MQT
population.

The optimal use of either grouping strategy requires the optimizer to have a good understanding of the
estimated selectivity of the query (normally 100%) and more importantly, a good understanding of the
estimated number of groups and the average number of rows per group. This information comes from
indexes and column statistics.

For hash grouping to be an optimal strategy, the optimizer and database engine need enough memory in
the query job’s pool to house the hash table. A large number of distinct groups results in a larger hash
table, and a larger hash table requires a larger memory pool to perform efficiently. If the optimizer expects
the job’s fair share of memory to be smaller than the estimated hash-table size, the hash-grouping
strategy is avoided. When grouping with a hash table, the ability to read and group the data in parallel
with SMP is available. This feature allows grouping queries to perform faster by using more resources.

Index grouping is the preferred strategy when hash grouping is not viable. The memory footprint of using
an index can be much smaller than housing an entire hash table. For index grouping to be optimal, a
permanent index that covers the grouping columns is required. Without a permanent index available, the
optimizer has to create a temporary data structure, known as an indexed list. This adds more time to the
query execution.

When grouping with an index, you cannot read and group the data in parallel through SMP. In other
words, if an index is used for grouping, SMP does not help the aggregation go faster. The creation of a
temporarily indexed list can employ SMP.

If index grouping is employed, and the MQT calculation and population is not meeting response-time
expectations, programmer intervention is required. This might take the form of writing a specific
population routine that takes advantage of various forms of parallelism.

Parallel insertion is not available when the database engine is writing the aggregated data to the MQT
through a single SQL request. For example, when unloading the groups from the hash table, the data is
inserted serially. If the MQT is to be populated with many rows (such as groups), then designing a parallel
MQT calculation and population process is advantageous. It is a good practice to understand the
optimizer’s strategy for aggregation prior to running the MQT creation query in the production
environment. This can be accomplished by using the query optimizer’s feedback and iSeries Navigator -
Visual Explain.

The MQT creation and population query can be explained only by using the iSeries Navigator - Run SQL
Scripts utility. This allows the query optimizer’s feedback to be analyzed without actually running the
query.

Creating and using MQTs in DB2 for i5/OS

 24

Figure 14 shows an example of grouping with a permanent index as drawn through Visual Explain:

171,877,450 groups are expected

"Aggregation" node upstream from the table and
index nodes

Single arrow from the table and index nodes; this
represents "no parallelism

"Index Scan" node representing the use of a
permanent index to access the rows in grouping
order

Figure 7: Grouping with a permanent index

Figure 15 shows an example of grouping and aggregation through a temporary hash table with SMP
parallelism, as drawn with Visual Explain:

36 groups are expected

"Temporary Distinct Hash Table" node used to
group and aggregate the data, upstream from
the table node

Double arrows from the table nodes; this
represents "parallelism

Figure 8: Example of grouping and aggregation with a temporary hash table with SMP parallelism

When the grouping columns are from more than one table, the selection and joining of rows from the
base tables occurs before any grouping and aggregation. A single permanent index does not cover all the
grouping columns. In this case, either a temporary hash table or a temporary indexed list is used to
facilitate the grouping and aggregation of data.

Creating and using MQTs in DB2 for i5/OS

 25

Figure 16 shows an example of grouping with a temporary indexed list, as drawn with Visual Explain:

171,877,450 groups are expected

"Aggregation" node upstream from the
temporary list and join nodes

"Sorted List Scan" node representing accessing
the data in grouping order

"Temporary Sorted List" node representing the
temporary index used to order the data

Figure 9: Example of grouping with a temporary indexed list

Figure 17 shows an example of grouping with a temporary hash table, as drawn with Visual Explain:

"Temporary Distinct Hash Table" node used to
group and aggregate the data, upstream from
the join node

Figure 10: Example of grouping with a temporary hash table

When the grouping columns are from only one table, this table can be placed first in the join order.
Accessing the rows in the first table with a permanent index (one that covers the grouping columns)
provides the rows in grouping order. After the join, the data can be aggregated directly.

Creating and using MQTs in DB2 for i5/OS

 26

Figure 18 shows an example of grouping with a permanent index as drawn with Visual Explain:

"Aggregation" node upstream from the join node

"Index Scan" node in join position
one represents accessing data in
grouping order

Figure 11: Example of grouping with a permanent index

Programmer intervention: Do it yourself

In cases where the MQT creation query uses index grouping, or the result set (such as groups) that is to
be placed into the MQT is large, some programmer intervention might be helpful in speeding up the
calculation and population process. In cases where the MQT creation is based on joining tables that
result in a large fan out of rows, some programmer intervention might be helpful in speeding up the join
process (see Figure 19).

Without programmer intervention some MQT creation queries might run for many hours, or in extreme
cases, many days.

Effectiveness
of

"CREATE
TABLE

AS"

Number of groups
and/or

number of base
tables joined

Few Many

High

Low

"Safe" zone

"Programmer
Intervention"

zone

Figure 19: Number of groups and/or number of tables joined

Creating and using MQTs in DB2 for i5/OS

 27

The key to faster joining, aggregation and insertion is parallelism. When the database engine is unable to
employ SMP implicitly, the programmer can design and implement a parallel process. This process consists
of breaking the data from the base tables and putting it into logical ranges, selecting and processing each
range in parallel, and inserting the aggregated data into the MQT in parallel (see Figure 20).

Schema

Base tables MQT

Aggregated
data

Query1

Query2

Query3

Rows
matching
query
range

Concurrent
INSERT +

subSELECTs

Figure 20: Concurrent INSERT and subSELECTs

The design process starts with profiling the data represented by the first one or two grouping columns.
Identify the distinct ranges of data within the first one or two grouping columns and compare this number
to the number of processors available during query execution. Either the number of processors or the
number of ranges determines the level of parallelism to employ. The goal is to have all the processors as
busy as possible, thus maximizing throughput and minimizing the time to populate the MQT. Using all the
processing resources to populate an MQT assumes all the resources are available for this activity. If other
jobs are running on the system, the degree of parallelism needs to be reduced.

For example, given a customer transaction table with grouping columns of Year / Customer where there
are three years, and thousands of customers represented in the data, three degrees of parallelism can be
used. The parallel grouping queries can each select and process one of three years. On a system with
three or more available processors, each grouping query runs on one processor, in parallel. If more
resources are available and a larger degree is desirable, then additional grouping queries can be used,
each processing a given year and separate range of customers.

When running a set of queries at the same time, the DB2 SMP degree must be set to *NONE.
Furthermore, ensure that all the data ranges represented in the base tables are accounted for. It is easy
to omit a range, resulting in incomplete data.

Creating and using MQTs in DB2 for i5/OS

 28

Employing a parallel process

Here is an example of creating and populating an MQT with a parallel process. First, you create the MQT
with no data using the DATA INITIALLY DEFERRED attribute.

CREATE TABLE Year_Customer_MQT AS
 (SELECT Year,
 Customer,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,
COUNT(*) AS Rows_per_Group

 FROM Transaction_Table
 GROUP BY Year,
 Customer)

DATA INITIALLY DEFERRED
REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION
MAINTAINED BY USER;

Depending on the processing resources available, define and run a set of parallel queries. Each query
needs to select a distinct range of rows, aggregate the data and insert the results into the MQT.

INSERT INTO Year_Customer_MQT
 (SELECT Year,
 Customer,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,
COUNT(*) AS Rows_per_Group

 FROM Table Transaction_
 WHERE Year = 2003
 GROUP BY Year,
 Customer);

INSERT INTO Year_Customer_MQT
 (SELECT Year,
 Customer,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,
COUNT(*) AS Rows_per_Group

 FROM Table Transaction_
 WHERE Year = 2004
 GROUP BY Year,
 Customer);

INSERT INTO Year_Customer_MQT
 (SELECT Year,
 Customer,

SUM(Revenue) AS Total_Revenue,
SUM(Quantity) AS Total_Quantity,
COUNT(*) AS Rows_per_Group

 FROM Transaction_Table
 WHERE Year = 2005
 GROUP BY Year,
 Customer);

Creating and using MQTs in DB2 for i5/OS

 29

Given that the individual queries select subsets of data from the base data, be sure to provide proper
indexes over the local selection columns. This provides the query optimizer and database engine greater
flexibility. Providing both radix and encoded vector indexes can be advantageous. Using the previous
example, the proper indexes to provide are as follows:

CREATE INDEX Transaction_Table_IX1
ON Transaction_Table (Year, Customer);

CREATE ENCODED VECTOR INDEX Tansaction_Table_EVI1
ON Transaction_Table (Year);

Be sure to test and verify the queries, the parallel process and the query results before relying on the
MQT. The integrity and accuracy of the MQT data is the responsibility of the programmer.

Testing and tuning MQTs
If the query optimizer rewrites the user query to access an MQT instead of the base tables, the same
basic methods and strategies are employed to access and process the MQT. Specifically, the MQTs are
scanned and probed for local selection, joining, grouping and ordering. It is important to test and tune the
MQTs prior to relying on them in a production environment. The key to good query performance is a
proper indexing and statistics strategy.

The indexing and statistics strategy for MQTs is essentially the same as the base tables. That is to say,
with indexes on the MQTs, the query optimizer has the necessary statistics and has many choices when
implementing the query request.

Column statistics used by SQE are collected and stored on a table by table basis, and this includes
MQTs. If SQE automatically collects a column statistic for an MQT, it is a good practice to identify those
columns periodically and to ensure that the statistics are updated after recreating or refreshing the MQT.
This minimizes poor query performance immediately after the MQTs are repopulated.

Given that the MQT rows can be selected, joined, grouped and ordered, indexes need to be created to
cover these activities. To determine the proper set of indexes, analyze the data model and test the
queries with the MQTs in place. Be sure to create indexes on any local selection columns and join
columns. In addition, consider creating indexes on any grouping columns and ordering columns
especially if the MQT has many rows.

Appendix B provides a link to the IBM virtual Innovation Center where you can find more information on
indexing and statistics strategies (see the Hardware Education Web site).

Enabling MQT support

The implicit consideration and use of MQTs by the query optimizer must be explicitly enabled. The query
optimizer’s default behavior is to ignore MQTs.

The age (latency) of the MQT also affects whether the MQT is considered. The attributes that allow the
consideration and usage of MQTs are:

 ENABLE QUERY OPTIMIZATION (through the CREATE or ALTER statement)
 MATERIALIZED_QUERY_TABLE_USAGE = *ALL (through QAQQINI)
 MATERIALIZED_QUERY_TABLE_REFRESH_AGE = *ANY (through QAQQINI)

Creating and using MQTs in DB2 for i5/OS

 30

If using a process other than REFRESH TABLE to populate the MQT, the QAQQINI file option
MATERIALIZED_QUERY_TABLE_REFRESH_AGE must be set to *ANY.

Appendix A provides a detailed description of these QAQQINI options and all the possible values. The
query runtime environment affects the optimization and use of MQTs. For MQTs to be considered:

 The environment must specify ALWCPYDTA(*OPTMIZE) or INSENSITIVE cursor.
 The base table to be replaced with an MQT must not be update- or delete-capable with this

query.

Feedback on the query’s use of an MQT

Rely on optimization feedback to determine whether the query optimizer has rewritten the user query to
use an MQT. Also, rely on the optimizer’s feedback to tune the access and processing of MQTs. For
example, the user’s query has local selection, and the query is rewritten to use an MQT; the new query
might also have local selection. The MQT rows are scanned if no appropriate indexes are available. This
situation can be identified and resolved by analyzing the feedback.

Feedback on MQT optimization and usage is provided through iSeries Navigator – Visual Explain and the
SQL performance monitors (database monitors).

Figure 21 shows an example of visually explaining a query rewritten to use an MQT:

BEFORE Query rewrite
Scan and aggregate
6,000,000 rows
from base table

AFTER Query rewrite
Scan 36 rows
from MQT

SELECT year, quarter, month,
 SUM(revenue_w_tax) AS srevenue_w_tax,
 SUM(revenue_wo_tax) AS srevenue_wo_tax,
 SUM(profit_w_tax) AS sprofit_w_tax,
 SUM(profit_wo_tax) AS sprofit_wo_tax,
 SUM(quantity) AS squantity,
 COUNT(*) as number_items_per_group
FROM ITEM_FACT
GROUP BY year, quarter, month;

Figure 21: Example of visually explaining a query rewritten to use an MQT

In i5/OS V5R3, Visual Explain does not explicitly highlight the use of an MQT. Look for one or more of the
base tables to be replaced with an MQT. Using a naming convention can help identify MQTs present in
the query plan.

Creating and using MQTs in DB2 for i5/OS

 31

In i5/OS V5R4, Visual Explain is enhanced to provide an option to highlight any MQTs in the picture. This
makes identifying the use of MQTs much easier.

To highlight an MQT in the query plan using Visual Explain (see Figure 22):

1. Click the View menu.
2. Select Highlight Materialized Query Tables.

Figure 22: Example of highlighting an MQT in the query plan

Creating and using MQTs in DB2 for i5/OS

 32

After selecting the highlighting option, any MQTs in the picture are augmented with an orange
background (see Figure 23).

Figure 23: Example of MQTs that are augmented with an orange background

Creating and using MQTs in DB2 for i5/OS

 33

In addition to Visual Explain, the detailed monitor data is enhanced to reflect the optimization and use of
MQTs. Specifically, the following information is provided:

 3030 Record multiple columns containing information about the MQTs that were examined. A
new record is written only if MQTs are enabled and MQTs exist over the tables specified in the
query.

 3000, 3001, 3002 Records, column QQC13 contains Y or N, which indicates that an MQT
replaced tables. The remaining information is based on the MQT instead of the base tables.

 3014 Record, column QQI7 contains the: MATERIALIZED_QUERY_TABLE_REFRESH_AGE
duration and QVC42 contains the MATERIALIZED_QUERY_TABLE_USAGE designation N, A
and U.

 1000/3006 Record, column QQC22 contains B5 access plan that needs to be rebuilt because the
MQT is no longer eligible or is deleted.

A simple query to determine which MQTs are used in what queries:

SELECT qqjnum as "Job No.",
qqucnt as "Unique Query No.",
qvqlib as "Schema Name",
qvqtbl as "MQT Name"

FROM -- a DB Monitor Table --
WHERE qqucnt <> 0
AND qqrid IN (3000, 3001, 3002)
AND qqc13 = 'Y'
ORDER BY qqjnum,

qqucnt;

Note that the summary monitor is memory-based and does not reflect the implicit use of MQTs.

Additional information on SQL Performance Monitors and the monitor data can be found in the
publication: DB2 Universal Database for iSeries Database Performance and Query Optimization.
Appendix B provides a link to the DB2 for i5/OS Publications Information Center where you can find this
manual.

Another very useful enhancement to i5/OS V5R4 is the ability to list all the MQTs on a given table and
evaluate the usage of the MQTs. For example, it is now possible to determine when a given MQT is used
by the optimizer and how many times it is used. Conversely, it is possible to determine that a given MQT
has never been used.

Creating and using MQTs in DB2 for i5/OS

 34

To show MQTs that are based on an existing table, use iSeries Navigator – Database (see Figure 24):

1. Navigate to and open a Schema.
2. Open Tables and right-click a specific table.
3. Select Show Materialized Query Tables.

Figure 24: Using iSeries Navigator – Database to show MQTs

Note that the statistics can also be accessed through an application programming interface (API).

Creating and using MQTs in DB2 for i5/OS

 35

The report that is provided can be used to verify which, if any, MQTs are based on this table. The report
shows descriptive information, such as the following (see Figure 25):

 Object long name
 Object short (system) name
 MQT creation time and date
 MQT enablement (Yes or No) for optimization

Figure 25: The report generated by iSeries Navigator – Database

Scrolling (to the right of the report) shows information on when the MQT was used (see Figure 25).

Figure 26: Scrolling to the right of the report generated by iSeries Navigator – Database

Creating and using MQTs in DB2 for i5/OS

 36

The Last Query Use column shows the timestamp when the MQT was last used by the optimizer to
replace user-specified tables in a query.

The Query Use Count column shows the number of instances the MQT was used by the optimizer to
replace user-specified tables in a query.

The Last Query Statistics Use and Query Statistics Use Count columns are currently not relevant, nor
populated. The query optimizer does not use MQTs for statistics.

Designing MQT refresh strategies

DB2 for i5/OS does not automatically keep MQTs synchronized with the base tables. When the base
tables change because of insert, update or delete activity, there can be a difference between the contents
of the MQTs and the base tables. This difference represents the data latency.

It is the responsibility of the user or programmer to refresh or maintain the MQT data. If queries access
MQTs that are not maintained as the base tables change, the query results increasingly diverge from the
results obtained when querying the base tables directly.

The most direct method to refresh an MQT is to issue the REFRESH TABLE statement:
 REFRESH TABLE Example_MQT;

Be aware that this is a full refresh of the MQT and causes the following:

 Any indexes on the MQT are removed.
 The contents of the MQT are removed.
 The underlying MQT query is run.
 The MQT is repopulated from the base tables.
 Any indexes on the MQT are recreated.

The same considerations apply to refreshing or maintaining an MQT as the initial creation and population.
More importantly, the time and resources available to refresh or maintain the MQT might be restricted
because of other data processing. Programmer intervention might be necessary or advantageous to
create an appropriate MQT refresh strategy that meets the business and technical requirements.

Some data and query environments lend themselves nicely to a periodic MQT refresh process. If the
business requires reporting against a segment of data, an MQT can be used; the MQT will only need to
be refreshed when that particular data changes. For example, if reports are based on a full year and
monthly view, the MQT that contains the aggregated data (representing Year / Month) and is refreshed as
part of the month-end processing.

BI and DW are other environments where data is loaded on a periodic basis. These periods provide a
natural opportunity, and in some cases, a requirement, to refresh or maintain the MQTs. If the ETL
process runs on a daily basis (for example, end-of-day processing), the MQT refresh or maintenance
strategy can also occur on a daily basis. Refreshing the entire MQT data set to incorporate only one day’s
worth of data might be inefficient. In this case, the MQT can be maintained (not refreshed) by calculating,
then inserting or updating rows with the new daily aggregates. Any MQTs that are based on hierarchies
can be refreshed or maintained using the same data, or they can be fully refreshed using the cascading
method discussed earlier. SQL triggers created on the base tables can provide a mechanism for initiating
the MQT maintenance. As the base tables change, the appropriate MQTs can be changed as well.

Creating and using MQTs in DB2 for i5/OS

 37

When using a process other than REFRESH TABLE to perform a full refresh of the MQT, it is a good
practice to use the following steps:

1. Document any column statistics on the MQT.
2. Set the isolation level / commitment control level to *NONE.
3. Drop any indexes on the MQT.
4. Delete all the rows of the MQT.
5. Calculate the aggregates and populate the MQT.
6. Create any indexes on the MQT.
7. Refresh any column statistics on the MQT.

It is important to test and verify the MQT refresh or maintenance process before using it in a production
environment.

Testing and tuning MQT refresh strategies
Test and verify that the MQT refresh and maintenance processes are tuned to meet or exceed the
response-time requirements. If the refresh time exceeds the processing window, the MQT creation, usage
and maintenance strategy must be amended, or additional processing resources must be applied. For
example, a full-refresh strategy might be too time-consuming, but an incremental maintenance strategy is
acceptable. When implementing a maintenance strategy based on immediate changes to the underlying
base tables, be sure to measure and understand any additional time and resources required. In other
words, the realtime maintenance of MQTs increases the time necessary for the insert, update and delete
operations on the base tables.

Using the SQL Performance Monitors and Collection Services tools can assist you with understanding the
increased workload and resource utilization of the refresh and maintenance process. You can get the
most out of the available resources or identify overcommitted resources. For example, when running
refresh processing in parallel, if processor resources are underused, a higher degree of parallelism can
be tried to help increase throughput. On the other hand, if all of the processor resources are fully used,
the parallel degree is adequate, or too high. All of this assumes a balanced configuration where the I/O
subsystem (memory and disk units) is capable of supporting the processors available.

Planning for success
Prior to creating MQTs, gather some baseline metrics on what SQL requests are issued. You also need
to determine the frequency of the SQL queries and how the queries are optimized and run; you can do
this by using tools such as the SQL Performance Monitor. Also, gather some baseline information on how
the system resources are used; Collection Services is a good instrument for this. After implementing
MQTs, the baseline information can be used to quantify any differences in behavior or performance of the
application.

Seriously consider running a benchmark to test any MQT creation, refresh and usage strategies. A great
place to run a benchmark or proof of concept is the IBM Benchmarking and Proof of Concept Centers in
Rochester, Minnesota or Montpellier, France. Understanding the costs and benefits of MQTs before
deploying to a production environment is a critical success factor. (Note: Appendix B provides a Web site
listing for more information about the IBM Benchmarking and Proof of Concept Centers.

Creating and using MQTs in DB2 for i5/OS

 38

Summary
With the latest version of DB2 for i5/OS, IBM continues to deliver additional features and functionality to
assist with the implementation of robust, data-centric applications. The ability to create and use MQT
provides yet another option for high-performance query processing. This paper, along with the
aforementioned publications, provides some guidance and insight on using this new feature.

Appendix B provides a Web site listing for the latest information regarding DB2 for i5/OS support of MQT.

Creating and using MQTs in DB2 for i5/OS

 39

Appendix A: SQL query engine details
With OS/400 V5R2, a newly reengineered SQL query engine was introduced. This new query engine is
referred to as SQE. The original query engine is referred to as the classic SQL engine (CQE). Initially, a
small subset of queries were optimized and run by SQE. With the availability of i5/OS V5R3 and V5R4,
many more queries are optimized and run by SQE. Only user queries optimized by SQE can implicitly use
MQT. Only MQTs with a query definition optimized by SQE can be implicitly used in the query plan.

SQE restrictions

In i5/OS V5R3, SQE is not capable of optimizing and running queries that contain or use:

 LIKE predicates
 LOB columns
 Column translation such as UPPER, LOWER and CCSID conversions
 Alternate collating sequences and sort sequences
 ALWCPYDTA(*NO) and SENSITIVE Cursors
 Read triggers
 Lateral correlation
 Logical File references
 References to tables or physical files that have Select/Omit logical files
 References to tables or physical files that have logical files with mapped or derived keys
 Distributed tables
 Non-SQL interfaces such as the QUERY, OPNQRYF and QQQQry APIs

In i5/OS V5R4, SQE is not capable of optimizing and running queries that contain or use:

 Column translation such as UPPER, LOWER and CCSID conversions
 Alternate collating sequences and sort sequences
 Read triggers
 Lateral correlation
 Logical File references
 References to tables or physical files that have Select/Omit logical files
 References to tables or physical files that have logical files with mapped or derived keys
 Distributed tables
 Non-SQL interfaces such as the QUERY, OPNQRYF and QQQQry APIs

If the query contains any of these items, then CQE is used to optimize and run the query; MQTs are not
considered or used.

Creating and using MQTs in DB2 for i5/OS

 40

QAQQINI file options for MQTs

MATERIALIZED_QUERY_TABLE_USAGE

This option controls the query optimizer’s recognition and use of MQTs:

 *DEFAULT - The default value is *NONE.
 *NONE - MQTs are not used in query optimization or implementation.
 *ALL – The user-maintained, refresh-deferred query tables can be used.
 *USER - user-maintained MQTs can be used.

MATERIALIZED_QUERY_TABLE_REFRESH_AGE

This option further determines which MQTs are eligible to be used, based on the last time a REFRESH
TABLE statement was done:

 *DEFAULT - The default value is 0. No MQTs can be used.
 *ANY - Any tables indicated by the MATERIALIZED_QUERY_TABLE_USAGE QAQQINI

parameter can be used. Equivalent to specifying 9999 99 99 99 99 99 (which is 9999 years, 99
months, 99 days, 99 hours, 99 minutes, 99 seconds). If the MQT has never been refreshed by
the REFRESH TABLE SQL statement, but the table has to be considered, then the
MATERIALIZED_QUERY_TABLE_REFRESH_AGE QAQQINI option must be set to *ANY.

 Timestamp_duration - Only tables indicated by the MATERIALIZED_QUERY_TABLE_USAGE
QAQQINI option that have a REFRESH TABLE performed within the specified timestamp
duration are used. This is a DECIMAL(20,6) number that indicates a timestamp duration since
the last REFRESH TABLE was done.

The QAQQINI options: IGNORE_LIKE_REDUNDANT_SHIFTS, NORMALIZE_DATA, and
VARIABLE_LENGTH_OPTIMIZATION must match. These settings are recorded at MQT creation time
and must match the options specified at query run time.

Creating and using MQTs in DB2 for i5/OS

 41

Appendix B: Resources
These Web sites provide useful references to supplement the information contained in this document:

 IBM eServer iSeries Information Center
http://publib.boulder.ibm.com/iseries/

 IBM Publications Center
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US

 IBM Redbooks™
http://www.redbooks.ibm.com/

 IBM Global Services Web site
http://www.ibm.com/servers/eserver/iseries/service/igs/db2performance.html

 iSeries Information Center
http://www.ibm.com/eserver/iseries/infocenter

 DB2 for i5/OS portal
http://www.ibm.com/eserver/iseries/db2

 IBM virtual innovation center for hardware education (for information on indexing and statistics)
http://www.ibm.com/server/enable/site/education/abstracts/indxng_abs.html

 IBM eServer iSeries Benchmark Center
http://www.ibm.com/eserver/iseries/benchmark/cbc

 DB2 for i5/OS Web site
http://www.ibm.com/iseries/db2/mqt.html

 Indexing and Statistics Strategies white paper:
http://www.ibm.com/servers/enable/site/education/abstracts/indxng_abs.html

 Star-Schema Join Strategies white paper:
http://www.ibm.com/servers/enable/site/education/abstracts/16fa_abs.html

 Symmetric Multiprocessing online course:
http://www.ibm.com/servers/enable/site/education/abstracts/4aea_abs.html

 DB2 for i5/OS Education:
http://www.ibm.com/eserver/iseries/db2/db2educ_m.htm and
http://www.ibm.com/servers/enable/education/i/ad/db2/recentindex1.html

 Questions regarding MQT support or any DB2 for i5/OS topic can be sent to:
RCHUDB@US.IBM.COM

Creating and using MQTs in DB2 for i5/OS

 42

About the author
Mike Cain

IBM DB2 for i5/OS Center of Competency

IBM Systems and Technology Group

Mike Cain is a senior technical staff member and the team leader of the DB2 for i5/OS Center of
Competency in Rochester, Minnesota, USA. Prior to his current position, he worked as an IBM AS/400®
systems engineer and technical consultant. He can be reached at mcain@us.ibm.com

Acknowledgments
Thanks to Shantan Kethireddy, Tom McKinley, Carol Ramler, Eric Will, Kent Milligan, Jarek Miszczyk and
Gene Cobb for their input and reviews.

Thanks to Dave Hermsmeier and Fernando Echeveste for their research and findings.

Creating and using MQTs in DB2 for i5/OS

 43

Trademarks and special notices
© Copyright. IBM Corporation 1994-2006. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them
available in every country.

AS/400, DB2, i5/OS, IBM, the IBM logo, Redbooks and System i are trademarks of International Business
Machines Corporation in the United States, other countries, or both. Java and all Java-based trademarks
are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

Creating and using MQTs in DB2 for i5/OS

 44

	Abstract
	Introduction
	MQT overview
	MQT implementation considerations
	Analyzing the data model and queries
	Analyzing the application
	Natural environments for MQTs

	Designing MQT definitions
	Designing MQTs that are based on queries
	Designing MQTs that are based on data models
	Designing MQTs based on hierarchies
	Creating MQT definitions

	CREATE TABLE example
	Anatomy of an MQT

	Populating MQTs
	Indexes to support MQT creation
	Environment to support MQT creation
	Cascading MQT creation
	Strategies and methods for aggregation
	Programmer intervention: Do it yourself
	Employing a parallel process

	Testing and tuning MQTs
	Enabling MQT support
	Feedback on the query’s use of an MQT
	Designing MQT refresh strategies

	Testing and tuning MQT refresh strategies
	Planning for success
	Summary
	Appendix A: SQL query engine details
	SQE restrictions
	QAQQINI file options for MQTs

	Appendix B: Resources
	About the author
	Acknowledgments
	Trademarks and special notices

