

Accessing web services
using IBM DB2 for i HTTP UDFs and

UDTFs

Nick Lawrence
Yi Yuan

IBM Systems and Technology Group ISV Enablement

March 2013

© Copyright IBM Corporation, 2013

Table of contents
Abstract..1
Introduction ...1
Sample code ..1
Prerequisites ...2
HTTP overview ..2

Uniform Resource Locator... 2
HTTP methods... 3

POST... 4
GET ... 4
PUT ... 4
DELETE... 4
HEAD... 4

HTTP methods in a service-oriented architecture ... 5
HTTP request header fields and connection properties..5

Setting the time out values .. 7
Following redirects ... 7

HTTP response code and header fields..7
Request message..8
Response message...9
Function reference..9

SQL HTTP table (verbose) functions... 10
SQL HTTP scalar functions ... 15
SQL helper functions ... 18

Encoding and decoding an HTTP URL ... 18
Base64 encoding and decoding .. 19

Configuring the JVM ...20
Selecting the JVM.. 20
JVM options and Java system properties.. 20
Using a truststore and keystore for SSL.. 21
HTTP proxy support... 22
Increasing the JVM heap size.. 23

Basic authentication ...23
Example scenarios..24

Load a web resource into the local database .. 24
Using data obtained from a web service in a join .. 25
Using a SOAP API ... 30
Publishing content to a remote server ... 32
Processing the response message HTTP header... 34
Accessing a web service using basic authentication...36

Summary..39

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

Resources..40
About the authors ...43
Trademarks and special notices..44

1

Abstract
This white paper explains how to access web services using IBM DB2 for i SQL queries and
user-defined functions. The paper includes examples that demonstrate how to combine
user-defined functions with the built-in SQL/XML support to create the Hypertext Transfer
Protocol (HTTP) request and process the HTTP response. The paper discusses the use of these
functions to access web services that employ a representational state transfer (REST) design,
and web services that employ SOAP in a service-orientated architecture (SOA).

The paper also describes how to communicate with a web service using the Secure Sockets
Layer (SSL) and HTTPS protocols.

Introduction
Web services offer exciting opportunities for the software developer and IT architect. Existing web services

can be used to rapidly respond to new business requirements as they evolve. In addition, the size and
complexity of an IT infrastructure can be reduced by consolidating hardware and software resources into
web services that are accessed through standardized interfaces.

In the context of a relational database, a web service can provide resources that are needed by the
database to validate or process the data in the database. For example, a web service can return a loan
applicant’s credit scores; the database can then use this information to enforce a constraint that requires

that only loans for qualified applicants are stored in the database. Another example might be a shipping
carrier’s web service that calculates the duration and cost of a prospective shipment; the database could
use this service while processing an online sales transaction.

Web services can be used to make a database more active, rather than a traditional passive data store.
For instance, a database used by an insurance company could publish suspicious transactions to a web
service that scrutinizes the transaction for fraud. This approach is frequently more efficient than a remote

application that regularly connects to and queries the local database, because the remote application is
notified only when there are meaningful changes in the local database.

Starting with IBM® DB2® for i 7.1 program temporary fix (PTF) Group SF99701 Level 23, user-defined

functions and table functions are provided for invoking HTTP methods. As web services are accessed
using the HTTP protocol, these new functions make it straightforward for database developers to
incorporate web services into an SQL query.

This paper provides a reference for the new functions and provides examples of how they can be used.
The paper explores how the built-in XML data type can be effectively combined with these interfaces when
communicating with web services. Additionally, the use of basic authentication and SSL for transmitting

sensitive information is discussed.

This paper provides only a basic overview of the HTTP protocol, REST architecture, and service-oriented
architecture (SOA). For more details, refer to the “Resources” section in this paper.

Sample code
The new HTTP user-defined functions (UDFs) and user-defined table functions (UDTFs) exist in the
SYSTOOLS SQL schema.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

2

SYSTOOLS differs from other DB2 for i supplied schemas in that it is not part of the default system path.
When IBM builds general purpose tools or examples, these examples are considered for inclusion in

SYSTOOLS. Inclusion in SYSTOOLS gives a wider audience the opportunity to obtain value from these
tools.

The tools and examples in SYSTOOLS are considered ready for use, but not part of any IBM product; they

are not subject to IBM service and support.

Customers can use the SYSTOOLS routines as it is or as a model to create their own solutions. It is
recommended that customers customize a copy of the routines in a different schema. The typical IBM

maintenance for SYSTOOLS is to delete existing objects, followed by the creation of the newer versions,
without consideration to any modifications made to existing objects.

The Java™ source is provided in the /QIBM/ProdData/OS/SQLLIB/bin/systools_java_source.jar file. If the

Java source is modified, the new source must be modified so that it exists in a user-defined package (that
is not com.ibm.db2). This prevents collision between Java packages supplied by IBM and Java packages
built by non-IBM developers.

For many environments, the tools in SYSTOOLS might be acceptable to developers as it is, and will not
require further enhancements or changes by the customer. In other environments, these tools can be used
by a developer to rapidly implement a proof of concept or prototype, before investing in a more robust

solution that does exactly what is needed in the most efficient way.

Prerequisites
In order to use the HTTP UDFs with DB2 for i 7.1, you need to install the following components in your

system:

 5770-SS1 DB2 PTF group SF99701 Level 23
 Java 1.6 or later (5761-JV1 Option 11, 12, 14, or 15)

HTTP overview
This section defines common terms and concepts used in the documentation of the HTTP UDFs and
UDTFs.

Uniform Resource Locator

In a RESTful architecture, a Uniform Resource Locator (URL) identifies the resource that the HTTP
method will affect. The basic syntax for a URL is :

scheme://domain:port/path?query_string

The scheme indicates the protocol that is used for sending information. When using the HTTP UDFs and
UDTFs in SYSTOOLS, the HTTP and HTTPS schemes are the only two protocols that are relevant.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

3

The domain name (or the IP address) identifies the destination for the URL (for example, www.ibm.com).
The domain name portion of a URL is not case sensitive, as DNS ignores character casing when resolving

a domain name to an IP address. (In other words, www.EXAMPLE.com is the same as
www.example.com)

The port number is optional. If omitted, port 80 is used for the HTTP scheme, and port 443 is used for the

HTTPS scheme.

The path is used to find the resource. The path is case sensitive, although some servers might choose to
handle the path in a case-insensitive way when locating the requested resource.

If provided, query_string contains one or more name-value pairs (separated by the ampersand symbol)

that are provided to software running on the server (for example, first_name=Nick&last_name=Lawrence).

When data needs to be provided as part of a URL (such as in a value of a query string), the data needs to

be specially encoded if it contains spaces or special characters. URL encoding can be accomplished using
the SYSTOOLS.URLENCODE function, which is discussed later in this paper.

The URL syntax can also include a user ID and password, as shown in the following syntax. Because a

URL often appears in system logs and traces, providing a user name and password as part of the URL is
generally not a good idea, and a more secure solution is discussed later in this paper.

URL syntax:

scheme://userid:pwd@domain:port/path?query_string

A link to a formal specification for the syntax and semantics of a URL (RFC 1738) is included in the

“Resources” section.

HTTP methods

In a RESTful architecture, the URL identifies a resource and the HTTP method indicates what action is to
be taken on that resource. This section contains a summary of the most commonly used HTTP methods

and their expected behavior. A web service might choose to implement the method differently than what is
described here; customers need to refer to the documentation for the service being used to determine the
exact behavior of these methods.

In a RESTful architecture, web services can exchange resources (information) using many different
representations (XML, JSON, HTML, and so on). For this reason, the HTTP documentation uses the
phrase representation of the resource when discussing the data that is being transmitted, rather than the

term resource.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

4

POST

The POST method is used to request that the service create a resource as a subordinate of the

resource identified by the URL. A representation of the resource to be created is indicated by the
request message parameter of the UDF or UDTF.

GET

The GET method is used to retrieve a representation of the resource that is identified by the URL. The

GET method is expected to be idempotent, meaning that it does not have side effects and will not
change the state of the resources on the server.

PUT

The PUT method is used to either create or replace a resource. The resource to be modified is
identified by the URL. The request message parameter of the UDF or UDTF contains the new
representation of the resource.

It is important to understand the difference between the PUT and POST operations. A POST operation
always requests the creation of a new resource, multiple POST operations using the same URL and
representation result in multiple unique resources being created on the server. The URL for the POST

method identifies the resource that contains the new resource.

A PUT operation requests a specific resource (identified by the URL) be replaced, or created if it does
not exist. The PUT operation is defined to be idempotent; multiple identical PUT operations will not

cause additional state changes.

DELETE

The DELETE method deletes the resource (identified by the URL) from the server. This method is also

idempotent, meaning that multiple DELETE requests for the same resource do not cause additional
state changes on the server.

HEAD

The HEAD method behaves similar to the GET method, except that the method returns only the
response HTTP header; in other words, a representation of the resource that is identified by the URL
is not returned. The response HTTP header contains the response code for the request, and

information about the representation that would have been returned if the GET method had been
used.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

5

This can be useful when the client needs to know some information about what the response code and
header fields for a GET request will be, without actually retrieving the data. For example, a client might

issue a HEAD request to determine when a resource was last modified. If a local cached version of a
resource is no longer current, then the client application can submit a GET request to retrieve an
updated representation of the resource.

The format of the response HTTP header is covered in the “HTTP response code and header fields”
section of this paper.

HTTP methods in a service-oriented architecture

The HTTP protocol was originally designed to promote RESTful web services. However, the HTTP

protocol does not itself require that a web service behave in a RESTful manner, and there are many web
services that are designed using SOA.

When a web service is implemented using SOA, the URL identifies an endpoint rather than a resource.

The client uses the HTTP POST method, and includes a message that defines a procedure to invoke, in
conjunction with the parameters for the procedure call. The web service then returns the output of the
procedure to the client in the HTTP response message. Thus, the POST method is used as a Remote

Procedure Call (RPC), rather than to create a new resource. The other HTTP methods are usually not
relevant in an SOA environment.

The simple object access protocol (SOAP) is an XML-based standard that is often used to define the

message that is sent to the web service. An example of constructing a SOAP message and using the
HTTP POST method as a Remote Procedure Call is included later in this paper.

HTTP request header fields and connection
properties
An HTTP request can contain HTTP header fields. The header fields provide the web service some
information about the request. For example, a client might indicate that it is sending XML data to the web
service. The client might also specify that it prefers to receive XML data in the response.

In addition, the Java virtual machine (JVM) uses a set of connection properties to process the HTTP
request. For instance, the connection properties might specify that redirects should be implicitly followed.

The sample HTTP UDFs and UDTFs in SYSTOOLS accept the header fields and connection properties as

an HTTPHEADER parameter. The value of this parameter needs to be provided in an XML format. XML is
often easier to construct and process (using SQL) than the plain text format that is defined by the HTTP
protocol. The HTTP functions in SYSTOOLS convert the XML document into the format required by the

HTTP specification.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

6

The value of the HTTPHEADER parameter can be NULL or an empty string, which causes the default
properties to be used. An explicit header needs to be supplied only when non-default properties must be

used or when header fields must be sent to the server.

Variations of the UDFs have been created so that this value can be supplied as an instance of the XML
data type, or as a serialized XML value in a CLOB(10 K).

A sample value for the HTTPHEADER parameter is shown in the following code

<httpHeader connectTimeout="10"
 followRedirects="true">
 <header name="Accept"
 value="application/xml" />
 <header name="Content-Type"
 value="application/xml" />
</httpHeader>

Listing 1: Sample HTTPHeader value

In this example, the root httpHeader element includes (optional) attributes that modifies the connection

properties. The valid attribute names and values are shown in Table 1.

Name Value Default Comment

connectionTimeout Integer System default Maximum amount of
time the JVM will wait
for the connection in
milliseconds.

readTimeout Integer System default Maximum amount of
time the JVM will wait
for reading data in
milliseconds.

followRedirects true/false True Indicates whether
redirects should be
implicitly followed
when a 3xx response
code is received from
the server.

useCaches true/false True Instructs the JVM that
caches are allowed to
be used if available.
DB2 for i does not
implement a cache in
the HTTP UDFs and
UDTFs, however, a
default cache might be
used if the default
cache is registered
with the JVM.

Table 1: Connection properties

In Listing 1, the header elements supply the name-value pairs that will be sent as header fields to the web
service. Each web service supports whatever name-value pairs are relevant for the task it is performing.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

7

You can find a simplified list of some of the most common HTTP request and response header fields using
the references in the “Resources” section.

In Listing 1, the Accept header instructs the web service to return its response data in an application/xml
format. The Content-Type header indicates that the application/xml data is sent to the web service.

Setting the time out values

The connectionTimeout and readTimeout properties affect the maximum amount of time that the

JVM waits to establish a connection or read data. The database and operating system also establish limits
on the maximum amount of time that will be spent during socket connections and database function calls.

Thus, changing the connection properties does not necessarily cause the UDF or UDTF to wait for the
corresponding amount of time before returning an error.

Following redirects

When the followRedirects property is set to true (the default) in the connection properties, the HTTP

UDF or UDTF handles a redirection response code (3xx) by automatically resubmitting the request to the
URL indicated by the location header field in the response.

There are two scenarios that developers need to be aware of when using this feature.

 A redirect response is not implicitly followed when the new location’s URL specifies that a
different protocol should be used. In other words, a redirect from http://www.example.com
to https://www.example.com is not implicitly followed.

 When the HTTP method is POST, redirects are followed, however, the HTTP method is

changed to GET when submitting the request to the new URL.

Web services commonly respond to a successful POST operation with a redirect response
code, and a URL to where the true response can be retrieved. Web browsers handle the

redirect by performing a GET, using the URL from the redirect. This process avoids
problems where the browser reloads the results of a POST request, and inadvertently
resubmits the POST. Some more information on this web development design pattern can

be found using the references in the “Resources” section.

The HTTP UDFs and UDTFs follow this same convention.

HTTP response code and header fields
When using the scalar HTTPHEAD function, or one of the verbose table functions, a response HTTP
header is provided to the caller of the UDF or UDTF. The response HTTP header includes a response

code and header fields. The response code indicates whether the request was successful. The header

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

8

fields contain additional information about the response. Similar to the HTTPHEADER input parameter, the
response HTTP header is returned in an XML format.

If the UDF or UDTF specifies an HTTPHEADER input parameter that has the CLOB data type, then the
response HTTP header will be returned as a serialized XML document in a CLOB. Otherwise, if the
HTTPHEADER input parameter has the XML data type, then the response HTTP header will be an

instance of the XML data type.

A sample response header is shown in Listing 2.

<httpHeader responseCode="200">
 <responseMessage>OK</responseMessage>
 <header name="HTTP_RESPONSE_CODE"
 value="HTTP/1.1 200 OK"/>
 <header name="Server"
 value="Apache"/>
 <header name="X-Powered-By"
 value="PHP/5.3.8-ZS5.5.0 ZendServer/5.0"/>
 <header name="Transfer-Encoding"
 value="chunked"/>
 <header name="Date"
 value="Fri, 04 Jan 2013 23:38:08 GMT"/>
 <header name="Connection"
 value="close"/>
 <header name="Content-Type"
 value="application/xml"/>
</httpHeader>

Listing 2: Response HTTP header

The response code is included as an attribute of the root httpHeader element; the responseMessage

element is a string value that contains the server's explanation for the response code.

Listing 2 is a response HTTP header that has a successful response code (200). The server has returned
the text OK as an explanation for the response code.

The HTTP protocol defines ranges of standard values for the response code. The meaning of the HTTP

response codes can be determined by using the link in the “Resources” section. When consulting HTTP
specifications, the term status code is used instead of response code. In addition, the term reason phrase
is used by the specification, whereas the element for the same idea is named responseMessage in

Listing 2.

The attributes of the header elements are the name-value pairs for the response's header fields.
In Listing 2 , the Content-Type header indicates that the returned resource has an application/xml

representation. You can find a simplified list of some of the most common HTTP request and response
header fields using the link in the “Resources” section.

Request message
The HTTP POST and PUT methods require a message to be set to the web service. In a RESTful
architecture, this message is a representation of the resource to POST or PUT to the URL.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

9

A non-null value must be supplied for the request message parameter when calling a UDF or UDTF that
uses the POST or PUT method.

The HTTP GET and DELETE methods identify the resource to retrieve or delete using only the URL. Thus,
the UDFs and UDTFs that invoke an HTTP GET or DELETE will not include a request message
parameter.

Note: The request message is referred to as the message body in the HTTP specification. The
specification uses the term message to refer to the entire HTTP request (request line, header fields, and
message body).

Response message
A web service can return a response message for any of the HTTP methods. The structure of the
response message is defined by the web service.

If a web service does not return a response message for a particular request, the UDFs and UDTFs return
the NULL value as the response message. This commonly happens during a PUT or DELETE request, if
the web service does not need to return any information to the client, other than a successful response

code in the response HTTP header.

Note: The response message is referred to as the message body in the HTTP specification. The
specification uses the term message to refer to the entire HTTP response (status line, header fields, and

message body).

Function reference
There are many variations of the functions for invoking HTTP methods. Fortunately, all of these functions
follow a standard naming convention:

HTTP(method)(data-type)(verbose)

The method component of the name indicates which HTTP method (discussed previously) will be

invoked.
The data-type component must be either CLOB or BLOB. This part of the name indicates the data type

that will be used for the response message, and (if applicable) the request message.

If a function name ends with the word verbose, it means that it is a table function. The table functions
return both the response HTTP headers and the response message as a result set.

For example HTTPPOSTBLOBVERBOSE is table function that uses the POST method to send and
receive BLOB data, and HTTPGETCLOB is a scalar function that uses the GET method to retrieve a
representation of a resource as a CLOB.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

10

To provide greater flexibility, variations of these functions exist that accept the HTTP method as a
parameter, rather than part of the function name (for example, HTTPCLOB or HTTPBLOBVERBOSE).

Allowing the HTTP method to be passed as a parameter provides a way to invoke HTTP methods that are
rarely used and do not have a UDF or UDTF associated with them. (The OPTIONS or TRACE methods
are some examples; these HTTP methods are seldom used and are not discussed in this paper.)

In addition to the naming conventions, the request HTTP header fields and connection properties can be
provided to each UDF or UDTF as either an XML data type or as a CLOB that contains serialized XML
data. If the UDF or UDTF returns the response HTTP header, then this output value uses the same data

type as the data-type request HTTP header.

SQL HTTP table (verbose) functions

Table functions that invoke the HTTP methods provide the most verbose response information. These

functions return both the response HTTP header and the response message.

There are many scenarios where the result of an HTTP request can only be interpreted by using the
information contained in the response HTTP header. For example, if an error happens on the server, the

response HTTP header allows the client to determine what kind of problem occurred. The response HTTP
header also frequently contains information about the response, such as the content type of the response
message.

If a response message is not returned from the web service due to a non-successful response code in the
response HTTP header, a NULL value is assigned to the response message column in the result set. In
addition, a warning SQLSTATE (01H52) is raised by the UDTF.

If the response HTTP header cannot be retrieved from the remote server due to a connection error, an
error SQLSTATE (38000) is raised.

The table functions and their signatures are show in Table 2. Note that all character parameters and

columns have a coded character set identifier (CCSID) of 1208 (This corresponds to a UTF-8 encoding).
The function names are composed of all uppercase characters; however, Table 2 provides the function
name using a mixed case for improved readability.

HTTP
method

Function name

POST httpPostBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 REQUESTMSG BLOB(2G)

 Output column Output column type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpPostBlobVerbose Input parameter Input parameter type

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

11

 URL VARCHAR(2048)

 HTTPHEADER XML

 REQUESTMSG BLOB(2G)

 Output column Output column type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER XML

 httpPostClobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 REQUESTMSG CLOB(2G)

 Output Column Output Column Type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpPostClobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER XML

 REQUESTMSG CLOB(2G)

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER XML

GET httpGetBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 Output column Output column type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpGetBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER XML

 Output column Output column type

 RESPONSEMSG BLOB(2G)

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

12

 RESPONSEHTTPHEADER XML

 httpGetClobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpGetClobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER XML

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER XML

PUT httpPutBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 REQUESTMSG BLOB(2G)

 Output column Output column type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpPutBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER XML

 REQUESTMSG BLOB(2G)

 Output column Output column type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER XML

 httpPutClobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

13

 REQUESTMSG CLOB(2G)

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpPutClobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER XML

 REQUESTMSG CLOB(2G)

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER XML

DELETE httpDeleteBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 Output column Output column type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpDeleteBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER XML

 Output column Output column type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER XML

 httpDeleteClobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpDeleteClobVerbose Input parameter Input parameter type

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

14

 URL VARCHAR(2048)

 HTTPHEADER XML

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER XML

Any
HTTP
Method

httpBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPMETHOD VARCHAR(128)

 HTTPHEADER CLOB(10K)

 REQUESTMSG BLOB(2G)

 Output column Output column type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpBlobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPMETHOD VARCHAR(128)

 HTTPHEADER XML

 REQUESTMSG BLOB(2G)

 Output Column Output Column Type

 RESPONSEMSG BLOB(2G)

 RESPONSEHTTPHEADER XML

 httpClobVerbose Input parameter Input parameter type

 URL VARCHAR(2048)

 HTTPMETHOD VARCHAR(128)

 HTTPHEADER CLOB(10K)

 REQUESTMSG CLOB(2G)

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER CLOB(10K)

 httpClobVerbose Input parameter Input parameter type

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

15

 URL VARCHAR(2048)

 HTTPMETHOD VARCHAR(128)

 HTTPHEADER XML

 REQUESTMSG CLOB(2G)

 Output column Output column type

 RESPONSEMSG CLOB(2G)

 RESPONSEHTTPHEADER XML

Table 2: Table functions and signatures

SQL HTTP scalar functions

Although the table functions provide a complete solution for invoking HTTP methods, a scalar version of
each HTTP method is provided in order to simplify common queries where the response header is not
interesting to the client.

If the response message cannot be returned due to either a connection error or a non-successful response
code, an SQL error (SQLSTATE ‘38000’) is raised. The message text may provide some clue as to what
caused the error. In the case of a non-successful response code, a better approach for problem analysis is

to use the verbose functions and examine the response HTTP header.

Table 3 describes the scalar functions and their signatures. Note that all character parameters and
columns have a CCSID of 1208 (This corresponds to a UTF-8 encoding). The function names are

composed of all uppercase characters; however, Table 3 provides the function name using mixed-case
characters for improved readability.

HTTP
method

Name Return type Parameter Parameter type

POST httpPostBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 REQUESTMSG BLOB(2G)

 httpPostBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER XML

 REQUESTMSG BLOB(2G)

 httpPostClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 REQUESTMSG CLOB(2G)

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

16

 httpPostClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER XML

 REQUESTMSG CLOB(2G)

GET httpGetBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 httpGetBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER XML

 httpGetClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 httpGetClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER XML

PUT httpPutBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 REQUESTMSG BLOB(2G)

 httpPutBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER XML

 REQUESTMSG BLOB(2G)

 httpPutClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 REQUESTMSG CLOB(2G)

 httpPutClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER XML

 REQUESTMSG CLOB(2G)

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

17

DELETE httpDeleteBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 httpDeleteBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER XML

 httpDeleteClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 httpDeleteClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPHEADER XML

HEAD httpHead CLOB(10K)

 URL VARCHAR(2048)

 HTTPHEADER CLOB(10K)

 httpHead XML

 URL VARCHAR(2048)

 HTTPHEADER XML

Any HTTP
method

httpBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPMETHOD VARCHAR(128)

 HTTPHEADER CLOB(10K)

 REQUESTMSG BLOB(2G)

 httpBlob BLOB(2G)

 URL VARCHAR(2048)

 HTTPMETHOD VARCHAR(128)

 HTTPHEADER XML

 REQUESTMSG BLOB(2G)

 httpClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPMETHOD VARCHAR(128)

 HTTPHEADER CLOB(10K)

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

18

 REQUESTMSG CLOB(2G)

 httpClob CLOB(2G)

 URL VARCHAR(2048)

 HTTPMETHOD VARCHAR(128)

 HTTPHEADER XML

 REQUESTMSG CLOB(2G)

Table 3: Scalar functions and signatures

SQL helper functions

Scalar functions have been created to help with common encoding issues.

Encoding and decoding an HTTP URL

The URL specification (RFC 1738) defines a set of special characters that need to be replaced with

escape sequences (for example, if used in a query string of a URL). The UDFs include functions to
perform this encoding and decoding. The signatures of these functions are shown in Table 4.
Although these functions support specifying an encoding character set for the URL, the World Wide

Web Consortium (W3C) Recommendation states that UTF-8 should be used. Not doing so may
introduce incompatibilities.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

19

Function
name

Result type Input parameter Input parameter
type

Notes

URLENCODE VARCHAR(4096)

 VALUE VARCHAR(2048) Original string

 ENCODING VARCHAR(20) Encoding. If
this value is
NULL, UTF-8
is used. UTF-8
is
recommended
by the World
Wide Web
Consortium
(W3C)

URLDECODE VARCHAR(4096)

 VALUE VARCHAR(2048) URL-encoded
string

 ENCODING VARCHAR(20) Encoding. If
this value is
NULL, UTF-8
is used. UTF-8
is
recommended
by the W3C.

Table 4: URL encoding/decoding function signature

Base64 encoding and decoding

Base64 encoding is widely used on the web to represent binary data as a string (for example, when

sending hash keys). Functions are provided for encoding and decoding base64 data. Table 5 shows
the signatures for the base64 encoding and decoding functions.

Function name Result type Input
parameter

Input parameter type Notes

BASE64ENCODE VARCHAR(4096)

 IN VARCHAR(2732) FOR
BIT DATA

Original bit
string

BASE64DECODE VARCHAR(2732)
FOR BIT DATA

 IN VARCHAR(4096) Base64-
encoded
string

Table 5: Base64 encode and decode function signatures

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

20

Configuring the JVM
The UDFs and UDTFs are written in Java and run with a JVM. In most scenarios, the UDFs and UDTFs
can be used without making any modifications to the JVM configuration. However, there are a few cases

where adjustments may need to be made.

 If HTTP proxy support needs to be enabled
 If a truststore or keystore needs to be set up for using SSL

 If the maximum heap size needs to be increased
 If multiple Java Development Kits (JDKs) are installed, and a JVM other than the system

default needs to be used

If adjustments are necessary, they need to be made before the first time the JVM is started in the job. In
other words, these settings must be in effect the first time the UDF or UDTF is invoked.

Selecting the JVM

When multiple versions of the Java Development Kit (JDK) are installed, the JAVA_HOME environment

variable is used to specify which JDK/bit mode to use (and therefore which 5761-JV1 option to use). The
variable should be set to the home directory of the JDK. For example, to specify that the 64 bit version of
Java 1.6 should be used, the JAVA_HOME environment variable should be set to

/QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit.

If the JAVA_HOME environment variable is not set, the default JDK is used. The determination of the
default JDK depends on which 5761-JV1 options are installed.

For information on using multiple Java Development Kits on IBM i, please see the link in the references.

JVM options and Java system properties

JVM options and Java system properties determine the environment in which Java programs run.

A Java properties file is one way to set the Java system properties on IBM i. A Java properties looks
similar to the one shown in Listing 3. Each line in the file specifies one Java system property and the
property’s value.

java.library.path=/home/user/lib64
file.encoding=utf-8

Listing 3: Java properties file example

To specify that a Java properties file should be used by the JVM, the QIBM_JAVA_PROPERTIES_FILE

environment variable must be set to the properties file’s path. Listing 4 shows an example of using the CL
command to set the environment variable.

ADDENVVAR ENVVAR(QIBM_JAVA_PROPERTIES_FILE)
VALUE('/home/user/java400/example.properties')

Listing 4: CL command to set properties file environment variable

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

21

If a Java properties file is not specified by the QIBM_JAVA_PROPERTIES_FILE environment variable, a

default properties file is used. On IBM i, the JVM looks for a file named, SystemDefault.properties, in the

user.home directory of the current user profile. If the properties file is not found in the user.home directory,
the JVM uses the properties file in the /QIBM/userdata/java400/ directory.

A properties file can also be used to set the JVM options. Listing 5 shows an example, where Listing 3 has
been modified to include a JVM option. The -Xmx2g option is to set the JVM option maximum heap size
(-Xmx) to 2 GB.

When you need to set JVM options in the properties file, you need to add #AllowOptions to the first line

of the properties file. This syntax indicates that any line beginning with a ‘-’ is treated as a JVM option,
rather than as a Java system property.

#AllowOptions
-Xmx2g
java.library.path=/home/user/lib64
file.encoding=utf-8

Listing 5: SystemDefault.properties file example

For more information on setting Java system properties and options, refer to the Setting Java system

properties link in the “Resources” section.

For a list of all the JVM options supported on IBM i, refer to the link for JVM command-line options in the
“Resources” section. For a more complete list of Java system properties, refer to the link for List of Java

system properties in the references.

Using a truststore and keystore for SSL

SSL is a protocol for encrypting information over an unprotected network. Hypertext Transfer Protocol
Secure (HTTPS), which is a widely used protocol for secure communication on Internet, is layered on top

of SSL to add security capabilities to standard HTTP communication.

SSL uses a digital certificate to identify the server or client of the HTTP communication. These certificates
are issued from a trusted certificate authority (CA). For more information about obtaining digital certificates

and certificate authorities, you can refer to the Digital Certificate Manager link in the “Resources” section.

SSL communication requires a certificate store on the client in order to store certificates for servers that
are trusted. The HTTP UDFs and UDTFs take advantage of the Java Secure Socket Extension (JSSE) for

SSL communication. JSSE provides the underlying framework for the SSL implementation and uses a
truststore and keystore for certificate management.

 The truststore contains the public certificates for remote servers that are trusted by the

client. These certificates are obtained from other parties that the client expects to
communicate with, or from certificate authorities that the client trusts to identify other
parties. This file often has a name such as cacerts, and by default it is located in the Java

runtime environment’s (JRE’s) security directory, for example,
/QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit/jre/lib/security/cacert

s.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

22

The Java Secure Socket Extension (JSSE) package already includes well known
certificate authorities in the cacerts file when it is installed. Thus, it is not usually

necessary to update the truststore when accessing public websites using the HTTP
functions. When the HTTP functions are used in a private network that requires SSL, the
certificates for the remote servers may not be included in the default truststore. If an un-

trusted certificate is received, the HTTP functions fail with a
java.security.cert.CertPathBuilderException exception error. This problem can be resolved
by copying the cacerts file to a different directory and updating the file so that it includes

the additional certificates. After adding the server’s certificate to the cacerts file, it is
necessary to set the Java system property, javax.net.ssl.trustStore, for the JVM so that
the correct cacerts file is used.

 The keystore file is less commonly used and contains only private certificates and keys.
The certificates in the keystore are used to verify the client’s identity to the remote server,
if the remote server demands client authentication. The client certificate should be added

to a keystore file if needed, and the javax.net.ssl.KeyStore system property should be set
for the JVM.

The keytool utility can be used to manage the truststore and keystore. You can find more information

about this utility using the links in the “Resources” section.

You can get more information about configuring certificate stores by referring to the Secure IBM i with
JDBC over SSL link in the “Resources” section. The process of setting up a truststore for a Java

application that requires a secure JDBC connection is similar to the process of setting up a truststore for
an application that needs to use an SSL connection for the HTTP UDFs and UDTFs.

Table 6 shows a series of Java system properties which can be used to configure the truststore and

keystore used for SSL certificates.

Property name Property description

javax.net.ssl.trustStore The location of the java truststore file. This contains the
collection of CA certificates trusted by JVM (the truststore).
The default value is the jssecacerts file or the cacerts file in
JRE’s security directory.

javax.net.ssl.trustStorePassword The password for the trusted keystore file.

javax.net.ssl.keyStore The location of the Java keystore file. This contains an
application process's own certificate and private key.

javax.net.ssl.keyStorePassword The password for the keystore file.

Table 6: Java properties for truststore and keystore

HTTP proxy support

An HTTP proxy server acts as an intermediary for requests from clients that are seeking resources from

Internet or intranet. The HTTP proxy is widely used for security and performance reasons. For example,
some HTTP servers are only accessible from certain IP addresses, and clients of the other IP addresses
need to look for a proxy server that uses an acceptable address to access the HTTP server.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

23

When using the HTTP UDFs and UDTFs to access Internet resources using proxy servers, a set of Java
system properties can be used to set the proxy server. Table 7 lists these properties in detail.

Property name Property description

http.proxyHost The host name of the proxy server

http.proxyPort The port number, the default value being 80.

http.proxyUser User name to log on proxy server.

http.proxyPassword User password to log on proxy server.

http.nonProxyHosts A list of hosts that should be reached directly, bypassing
the proxy.

Table 7: Java properties for proxy server

Listing 6 shows a properties file example specifying Java system properties for a proxy server.

http.proxyHost=www.proxyhost.com
http.proxyPort=8080
http.proxyUser=proxyuser
http.proxyPassword=proxypwd
http.nonProxyHosts=*.ibm.com|wikipedia.org|...

Listing 6: Properties file example for proxy server

Increasing the JVM heap size

In some cases, the JVM option maximum heap size (-Xmx) might need to be increased. One example of
where this might occur is if a very large file is transferred, and an out-of-memory error occurs. A solution to

this problem is to modify the maximum heap size in the properties file. Listing 7 shows an example of
modifying the maximum heap size to 2 GB.

#AllowOptions
-Xmx2g

Listing 7: SystemDefault.properties file modifying maximum heap size

If a heap size greater than 3 GB is necessary, a 64-bit JVM must be used. After installing either 5761-JV1

option 12 or 15, the JAVA_HOME environment variable can be used to select the appropriate JVM.

Basic authentication
The HTTP UDFs and UDTFs can supply credentials using basic authentication.

The simplest way to provide the authorization credentials is to supply a user name and password as part
of a URL, as shown in the “Uniform Resource Locator” section. Although simple, this approach is not
recommended. The problem is that the URL can appear in the SQL message text and job log if an error

occurs, thus using this approach can unintentionally expose the password.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

24

A better solution is to encode the credentials into the request header directly. When using basic
authorization, a three step process is used to determine the value of the authorization header.

1. The user name and password are combined into a single string separated by a colon ‘:’ (for
example, username:password). The string must use the UTF-8 character set.

2. The binary value of the resulting string is encoded in base64.

3. The authorization method (Basic) is put before the encoding string.

An authorization header field for a user that has a name nick and a password passw0rd is shown in
Listing 8.

<header name="Authorization"
 value="Basic bmljazpwYXNzdzByZA=="/>

Listing 8: Authorization header field

The base64 encoding is not an encryption algorithm, and therefore, handling user names and passwords
in SQL requires the following caution:

 Do not specify a password as a string in the source for a program, procedure, or function.

Do not specify the password as a string in a view. Instead, use a variable.
 When connected to a remote database, data is not encrypted during the transmission. To

protect the password in these cases, consider using a communications encryption

mechanism such as Internet Protocol Security Architecture (IPSec) (or SSL if connecting
between IBM i products).

An example that uses basic authentication to access a web service is provided later in this paper.

Example scenarios
The following example scenarios are included to demonstrate the HTTP functions and describe some
potential use cases. Because every web service is different, the documentation of a specific web service
should be consulted before using the service. Users of a web service should always read and comply with

the web service’s terms of service before using its capabilities.

Load a web resource into the local database

In some cases, it might be beneficial to store a resource that is identified by a URL in the local database
as a BLOB. This could provide faster or more consistent access to important information that is available

on the web.

The example in Listing 9 obtains the PDF file for a document titled IBM i Strategy and Roadmap from the
IBM website and stores it in a database table as a BLOB. The variable myURL is used only to improve

readability. The request header used in the HTTPGETBLOB function is the empty string, which causes the
default values to be used.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

25

CREATE TABLE PDF(URL VARCHAR(4096),
 PDF BLOB(2G));

CREATE VARIABLE myURL VARCHAR(4096);
SET myURL =
'http://public.dhe.ibm.com/common/ssi/ecm/en/pow03032usen/POW03032USEN.PDF';

INSERT INTO PDF(URL, pdf)
 VALUES(myURL,
 SYSTOOLS.HTTPGETBLOB(myurl, ''));

Listing 9: Insert a web resource into a database table

The examples that follow assume that the web service is exchanging XML data with DB2 for i. The XML

data allows DB2 for i to do a lot more than retrieval and storage of web resources.

Using data obtained from a web service in a join

In the context of a relational database, data that is obtained from a web service is often used in a join with
relational data. The web service typically provides additional data that is needed for some processing or

analysis.

This example explains a simple analytical scenario. Assuming that a European company performs online
business transactions world wide. A large number of sales are performed each business day. In these

transactions, customers make payments by converting their currency to Euros as part of the transaction. A
summary report for the number of sales (summarized by date and type of currency) is stored in a table
named DAILY_SALES. A subset of the data in this table for the United States Dollars (USD) currency is

shown in Figure 1.

Figure 1: DAILY_SALES table

It has been observed that the number of sales varies from day to day. A possible explanation might be that

the number of sales is related to the exchange rate between the Euro and the currency used by the
customer for payment. For example, a United States customer might choose to defer making a purchase
until the cost of the purchase in USD is less, due to a better exchange rate. In order to verify this theory,

historical information on the exchange rate between Euros and USD is needed, but this information is not
available in the database.

This example obtains the exchange rates for the last 90 days from a web service sponsored by the

European Central Bank. This data is then joined with the existing relational data, shown in Figure 1.

After some initial research, it is possible to determine that the 90-day history of exchange rates can be
retrieved from the European Central Bank using the URL shown in Listing 10.

http://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist-90d.xml

Listing 10: URL for 90-day exchange rate history

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

26

Listing 11 demonstrates how to retrieve an XML response from the bank using the HTTPGETBLOB
function. The first parameter to the function is the URL from Listing 10. The second parameter contains the

header fields for the request. In this example, the HTTPHEADER parameter is the empty string, meaning
that the default header fields and connection properties will be used. Although many web services would
require an Accept header field be specified to indicate that the data must be returned in a particular format,

this web service uses an extension (.xml) on the URL indicating that XML data will be returned. Thus,
there is no need to specify an explicit Accept header field to request XML content as a response.

Because the HTTPGETBLOB function returns a BLOB that is known to contain a serialized XML

document, the BLOB value can be passed into the XMLPARSE function to create an instance of the XML
data type.

VALUES
 XMLPARSE(DOCUMENT
 SYSTOOLS.HTTPGETBLOB(
 -------------- URL --------------------------
 'http://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist-90d.xml',

 -------------- Header -------------------------
 ''
)
)

Listing 11: Retrieve XML response

A simplified version of the returned XML document is shown in Listing 12. An actual response from this
web service contains a cube element for each of the 90 days, with many currency exchange rates for each
day. Listing 12 has been shortened so that only two days are shown, with two exchange rates per day.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

27

<gesmes:Envelope
 xmlns:gesmes="http://www.gesmes.org/xml/2002-08-01"
 xmlns="http://www.ecb.int/vocabulary/2002-08-01/eurofxref"
>
 <gesmes:subject>Reference rates</gesmes:subject>
 <gesmes:Sender>
 <gesmes:name>European Central Bank</gesmes:name>
 </gesmes:Sender>
 <Cube>
 <Cube time="2013-03-06">
 <Cube currency="USD" rate="1.3035" />
 <Cube currency="JPY" rate="121.85" />
 <!-- many more Cube (currency) elements -->
 </Cube>
 <Cube time="2013-03-05">
 <Cube currency="USD" rate="1.3034" />
 <Cube currency="JPY" rate="121.45" />
 <!-- many more Cube (currency) elements -->
 </Cube>
 <!-- many more Cube (time) elements -->
 </Cube>
</gesmes:Envelope>

Listing 12: Response from the bank’s web service

Relational databases and SQL are designed to work with result sets (rows and columns). The XMLTABLE

built-in table function can be used to convert the results from the function call in Listing 11 into an SQL
result set. An SQL query that makes use of XMLTABLE is shown in Listing 13.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

28

SELECT my_cube.rate_time, my_cube.currency, my_cube.rate
 FROM
 XMLTABLE(
 -------------- Declare Namespaces ----------------------
 XMLNAMESPACES(
 DEFAULT 'http://www.ecb.int/vocabulary/2002-08-01/eurofxref',
 'http://www.gesmes.org/xml/2002-08-01' AS "gesmes"
),

 -------------- Row Expression --------------------------
 'gesmes:Envelope/Cube/Cube/Cube'

 PASSING
 ------------ Initial Context ------------------------
 XMLPARSE(DOCUMENT
 SYSTOOLS.HTTPGETBLOB(
 ----------------- URL ------------------------
 'http://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist-90d.xml',
 ---------------- Header ---------------------
 ''
)
)
 -------------- Result Set Columns -------------
 COLUMNS
 currency CHAR(3) PATH '@currency',
 rate DECIMAL(10,4) PATH '@rate',
 rate_time DATE PATH '../@time'
) my_cube

WHERE currency = 'USD'
ORDER BY rate_time DESC

Listing 13: Using XMLTABLE to create a result set

The XMLTABLE function in Listing 13 has several important components to it.

The XMLNAMESPACES declaration defines two in-scope namespaces. The namespace
http://www.ecb.int/vocabulary/2002-08-01/eurofxref is to be used as the default element

namespace. All unqualified elements in XPath expressions will be qualified by this namespace. The
namespace http://www.gesmes.org/xml/2002-08-01 is bound to the namespace prefix gesmes.

The required result set must include one row for each of the repeating Cube elements that are three Cube

levels deep (The Cube elements with the currency and rate attributes). The row expression selects these

elements to produce the rows of the result set.

In this example, the PASSING clause defines the initial context of the row expression to be the XML

document that is returned from the web service. In other words, the row expression is relative to the root of
the XML document returned from the XMLPARSE function call. The parameter for the XMLPARSE
function is based on Listing 11 and has already been discussed.

The COLUMNS clause defines the columns of the result set. Each column contains an SQL column name,
an SQL type, and an XPath expression that defines how to extract the columns data from the current item
of the row expression. In Listing 13, the currency and rate columns are built from the currency and rate
attributes of the Cube element that has been selected by the row expression. The rate_time column
needs to refer to a time attribute that is in the parent Cube element. Thus, the XPath expression begins
with '..' which is an XPath abbreviation for parent::node().

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

29

A link to a tutorial for using the XMLTABLE function can be found in the “Resources” section.

The result set from Listing 13.is (partially) shown in Figure 2.

Figure 2: Result set from XMLTABLE

Combining the results in Figure 2 and Figure 1 can now be easily accomplished with INNER JOIN. This is
shown in Listing 14, and the INNER JOIN syntax is shown in bold.

SELECT ds.sales_date, ds.sales_currency, ds.num_sales, my_cube.rate
 FROM
 XMLTABLE(
 -------------- Declare Namespaces ----------------------
 XMLNAMESPACES(
 DEFAULT 'http://www.ecb.int/vocabulary/2002-08-01/eurofxref',
 'http://www.gesmes.org/xml/2002-08-01' AS "gesmes"
),
--------------- Row Expression --------------------------
 'gesmes:Envelope/Cube/Cube/Cube'
 PASSING
 ------------ Initial Context ------------------------
 XMLPARSE(DOCUMENT
 SYSTOOLS.HTTPGETBLOB(
 ----------------- URL ------------------------
 'http://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist-90d.xml',
 ---------------- Header ---------------------
 ''
)
)
 -------------- Result Set Columns -------------
 COLUMNS
 currency CHAR(3) PATH '@currency',
 rate DECIMAL(10,4) PATH '@rate',
 rate_time DATE PATH '../@time'
) my_cube

INNER JOIN daily_sales ds ON
 (ds.sales_currency = my_cube.currency AND
 ds.sales_date = my_cube.rate_time)

WHERE ds.sales_currency = 'USD'
ORDER BY ds.sales_date DESC

Listing 14: XMLTABLE with INNER JOIN

The result set for Listing 14 is shown in Figure 3. In this example, the (fictional) number of sales has been

fashioned such that it is easier to visually see a strong correlation between the exchange rate and number
of sales. In actual applications, more sophisticated statistical techniques can be employed to determine
the strength and significance of a correlation.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

30

Figure 3: Result of INNER JOIN

Using a SOAP API

In response to an event that occurs within the database, the database might need to call upon a web
service to carry out an external action. For instance, assume that a banking application needs to offer a

service that allows a customer to receive a text message if the customer’s account balance drops below a
minimum amount. If the bank has access to a web service that can send a text message, then the
database can employ the web service to satisfy the business requirement.

This example assumes that the web service has adopted an SOA design. The remote procedure is
invoked by sending a SOAP message to an endpoint (identified by a URL) using the HTTP POST method.
It is assumed that the SOAP message must follow the format shown in Listing 15 and that the endpoint
URL is http://example.com/WebServices/SMS.asmx.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ws="http://www.example.com/WebServices/"
 >
 <soap:Body>
 <ws:SendMessage>
 <ws:SMSMessage>
 <ws:MobileNumber>string</ws:MobileNumber>
 <ws:MessageText>string</ws:MessageText>
 </ws:SMSMessage>
 </ws:SendMessage>
 </soap:Body>
</soap:Envelope>

Listing 15: SOAP SendMessages request

Although this example is fictional, the format of the SOAP message in Listing 15 is based on real web
services that provide similar functionality. The example has been simplified to ignore certain issues, such

as multiple phone numbers in the same request, billing information, and authorization credentials.

There are two parts to sending the request. The first part is to build the SOAP request that will be sent to
the web service as a message. The second part is to send the message to the endpoint’s URL.

Listing 16 defines a function to build the XML value for the SOAP request. The function makes use of the
SQL/XML publishing functions. The XMLDOCUMENT and XMLELEMENT publishing functions are used to
build the document and element nodes, respectively. The XMLFOREST function is used to create the
ws:MobileNumber and ws:MessageText elements as siblings (rather than a nested or parent-child

relationship), and to define the contents of those elements. The XMLNAMESPACES declaration is used to
define the namespace bindings that are used within the soap:Envelope element.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

31

CREATE FUNCTION build_soap_req(phone VARCHAR(25))
RETURNS XML
LANGUAGE SQL
RETURN
 XMLDOCUMENT(

 ---- Soap Envelope ----
 XMLELEMENT(NAME "soap:Envelope",
 XMLNAMESPACES(
 'http://schemas.xmlsoap.org/soap/envelope/' AS "soap",
 'http://www.example.com/WebServices/' AS "ws"
),
 ---- Soap Body ----
 XMLELEMENT(NAME "soap:Body",
 XMLELEMENT(NAME "ws:SendMessage",
 XMLELEMENT(NAME "ws:SMSMessage",
 XMLFOREST(phone AS "ws:MobileNumber",
 'low balance!' AS "ws:MessageText"
) -- XMLFOREST
) -- ws:SMSMessage
) -- ws:SendMessage
) -- soap:Body

) -- soap:Envelope

) -- XMLDOCUMENT

Listing 16: Function to build a SOAP request

The document that is produced by the function matches the document in Listing 15 with the exception that
the content of the ws:MobileNumber and ws:MessageText elements are set to concrete values.

Listing 17 shows an SQL statement where the scalar HTTPPOSTBLOB function is used to post the XML
data constructed by the function defined in Listing 16. The SOAPAction and Content-Type header
fields are added to the request's header. The SOAPAction header field is part of the SOAP standard; it is

used by the web service to filter HTTP requests without actually parsing the message. For this example,
the test team made the assumption that the SOAPAction header field needs to have a value of
http://www.example.com/WebServices/SendMessages.

The response from the web service is stored in the post_blob_response variable.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

32

 CREATE VARIABLE post_blob_response BLOB;

 CREATE VARIABLE notify_phone_number VARCHAR(25)
 DEFAULT '1234567890';

 SET post_blob_response =
 SYSTOOLS.HTTPPOSTBLOB(
 -- URL --
 ' http://example.com/WebServices/SMS.asmx',

 -- Header --
 '<httpHeader>
 <header name="SOAPAction"
 value="http://www.example.com/WebServices/SendMessages"
 />
 <header name="Content-Type"
 value="application/soap+xml"
 />

 </httpHeader>',

 -- Message --
 XMLSERIALIZE(build_soap_req(notify_phone_number) AS BLOB(2G))
)

Listing 17: HTTPPOSTBLOB invocation

The statements in Listing 17 can easily be embedded in a trigger or stored procedure to accomplish the

business requirement.

This example has shown that the HTTP methods can be used to access web services that are designed to
use a service-oriented architecture, instead of a resource-oriented architecture. It also demonstrates how

a web service can be used to make the database more active by performing external actions when
database events occur.

Publishing content to a remote server

In some cases, the database may need to update a web resource with new or changed data. Assume that

an insurance company operates many data centers that manage the day-to-day operations of the
company. Although each data center has a unique application environment, the company has
consolidated their fraud detection applications into a central web service. At the end of each business day,

each data center must submit claim information (in an XML format) for claims that have been created or
updated that day and are for amounts greater than $50,000. The data is to be submitted to a URL that
identifies the branch and date of the submission. For instance, a URL that can be used to submit claims

for branch_xyz on February 8, 2013 might look as the one shown in Listing 18.

http://example.com/branch_xyz/updated_claims/20130208

Listing 18: Example URL

The information is to be submitted using the HTTP PUT method, so that a list of claims identified by the
URL is updated if the list already exists.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

33

Figure 4 shows a CLAIMS table containing the claims that have been created or updated in branch_xyz
local data center on February 8, 2013. Several claims are for amounts more than $50,000 and need to be

sent to the central web service, using the URL mentioned in Listing 18.

Figure 4: CLAIMS table

For simplicity, it has been assumed that the XML document that must be sent to the web service should

look as shown in Listing 19.

<?xml version="1.0" encoding="UTF-8"?>
<daily_update>

 <claim>
 <id>1234567890</id>
 <claimant>Nick</claimant>
 <amount>75000</amount>
 <update_time>2013-02-08T13:06:35.653674</update_time>
 </claim>

 <claim>
 <id>1234567892</id>
 <claimant>George</claimant>
 <amount>88000</amount>
 <update_time>2013-02-08T13:06:35.653674</update_time>
 </claim>

 <claim>
 <id>1234567894</id>
 <claimant>Kim</claimant>
 <amount>99000</amount>
 <update_time>2013-02-08T13:06:35.653674</update_time>
 </claim>

</daily_update>

Listing 19: Daily update XML document

Building the XML document as in Listing 19 might sound complicated, but the document can be built with a
straightforward application of the XMLGROUP function.

Listing 20 shows how an SQL, query using the aggregate XMLGROUP publishing function, can be used to
transform relational rows and columns into the XML document shown in Listing 19. The AS clause is used
to assign an element name for the columns that have been provided as parameters. Each row in the

aggregation becomes a claim element; the claim elements then become the children of the root
daily_update element. As there is no GROUP BY clause used with the select, there is only one row

(and therefore one XML document) in the result set.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

34

SELECT XMLGROUP(id AS "id",
 claimant AS "claimant",
 amount AS "amount",
 last_updated AS "update_time"
 OPTION ROW "claim"
 ROOT "daily_update"
) AS summary_doc
FROM claims
WHERE amount > 50000 AND
 DATE(last_updated) = '2013-02-08'

Listing 20: Query to build the daily update XML document

The query in Listing 20 results in a scalar value, and this means it can be used as a parameter of the

HTTPPUTBLOB function. Listing 21 shows how this is accomplished. The query has been modified to
serialize the XML value to a BLOB, as a BLOB data type is required by the HTTPPUTBLOB function. The
response from the web service is stored in a variable named put_response for use by the application.

CREATE VARIABLE put_response BLOB(2G);

SET put_response =
 SYSTOOLS.HTTPPUTBLOB(
 --- URL ---
 'http://example.com/branch_xyz/updated_claims/20130208',

 --- Header ---
 '<httpHeader>
 <header name="Content-Type" value="application/xml"/>
 </httpHeader>',

 --- Message ---
 (SELECT XMLSERIALIZE(
 XMLGROUP(id AS "id",
 claimant AS "claimant",
 amount AS "amount",
 last_updated AS "update_time"
 OPTION ROW "claim"
 ROOT "daily_update"
) AS BLOB(2G)) AS summary_doc
 FROM claims
 WHERE amount > 50000 AND
 DATE(last_updated) = '2013-02-08'
)
)

Listing 21: HTTP PUT BLOB function

Processing the response message HTTP header

Assume that it is necessary to verify that the HTTPPUTBLOB in Listing 21 was successful. Further,
assume that the web service accepts the data provided and does not return any content in the response
message. In that case, the put_response variable will be assigned the NULL value. The response HTTP

header that is returned from the HTTPPUTBLOBVERBOSE function must be used to determine the status
of the request.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

35

Listing 22 shows how a CROSS JOIN can be used to pass the RESPONSEHTTPHEADER column from
the HTTPPUTBLOBVERBOSE table function as a parameter of the XMLTABLE table function. The

XMLTABLE function extracts the response code and response message text from the response HTTP
header. The final SELECT includes all the columns returned from XMLTABLE, and the response message
returned from the HTTPPUTBLOBVERBOSE table function.

SELECT xt.*,
 put_blob_rs.responseMsg
FROM
TABLE(
 SYSTOOLS.HTTPPUTBLOBVERBOSE(
 --- URL ---
 'http://example.com/branch_xyz/updated_claims/20130208',

 --- Header ---
 '<httpHeader>
 <header name="Content-Type"
 value="application/xml"/>
 </httpHeader>',

 --- Message ---
 (
 SELECT
 XMLSERIALIZE(
 XMLGROUP(id AS "id",
 claimant AS "claimant",
 amount AS "amount",
 last_updated AS "update_time"
 OPTION ROW "claim"
 ROOT "daily_update"
) AS BLOB(2G)) AS summary_doc
 FROM claims
 WHERE amount > 50000 AND
 DATE(last_updated) = '2013-02-08'
)
)
) put_blob_rs

CROSS JOIN

XMLTABLE('httpHeader'
 PASSING
 XMLPARSE(DOCUMENT put_blob_rs.responseHttpHeader)
 COLUMNS
 code INTEGER PATH '@responseCode',
 message VARCHAR(200) PATH 'responseMessage'
) xt;

Listing 22: Response HTTP header cross join with XMLTABLE

The result of the CROSS JOIN is shown Figure 5. An HTTP response code of 204 indicates that the
request was successful, but the server did not need to return any content. The NULL value (‘-‘) is returned
for the response message.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

36

Figure 5: Result of CROSS JOIN

Accessing a web service using basic authentication

Business processes often need to access resources that require credentials using basic authentication.
The popular Gmail web service is used in this example to illustrate how to accomplish this. This service
was chosen because it is well known, it requires basic authentication, and it returns XML data.

The first step is to assign the user name and password to a global variable. Using a global variable instead
of a literal string helps prevent these sensitive pieces of information from appearing in the system catalogs
if the password is ever used as part of a function, procedure, or view. A UTF-8 character set is used for

the variable; when this value is converted to base64, the base64 encoding needs to be based on a binary
version of UTF-8 data.

CREATE VARIABLE mypassword VARCHAR(1024) CCSID 1208;
SET mypassword = 'username:password';

Listing 23: Global variable to store user ID and password

Next, the request header is constructed. If there are many header fields, or if the header fields depend on

relational data, it migjt be easier to build the header XML document using the SQL/XML publishing
functions. Listing 24 shows how an SQL query is used to assign the request header to a global variable
called header_data. A list of name and value pairs is supplied as the table for the query. The

authorization header field’s value is calculated using the SYSTOOLS.BASE64ENCODE function to
encode the user name and password into the base64 format. The XMLGROUP function is used in the
SELECT statement to convert the result set into an XML document. The AS ATTRIBUTES clause causes

the columns to be created as attributes (rather than elements) in the XML document.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

37

CREATE VARIABLE header_data XML;

SET header_data = (

SELECT
 XMLGROUP(requestHeader.hname AS "name",
 requestHeader.hvalue AS "value"
 OPTION ROW "header"
 ROOT "httpHeader"
 AS ATTRIBUTES) AS header
FROM
(VALUES

 -- Authorization header ---
 ('Authorization', 'Basic ' || SYSTOOLS.BASE64ENCODE(mypassword)),
 -- Accept header --
 ('Accept', 'application/atom+xml')

) requestHeader(hname, hvalue)

);

Listing 24: Constructing the request header

The value that is assigned to the header_data variable is shown in Listing 25.

<httpHeader>
 <header name="Authorization" value="Basic bmljazpwYXNzdzByZA=="/>
 <header name="Accept" value="application/atom+xml"/>
</httpHeader>

Listing 25: header_data

The header information can now be provided to the HTTPGETBLOB function. Because XML data is
returned from the web service, the XMLTABLE function is used to decompose the data into rows and

columns.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

38

SELECT result.*
FROM
XMLTABLE(
 XMLNAMESPACES(DEFAULT 'http://purl.org/atom/ns#'),
 'feed/entry'
 PASSING
 XMLPARSE(DOCUMENT
 SYSTOOLS.HTTPGETBLOB(
 -- URL --
 'https://mail.google.com/mail/feed/atom/',

 -- header --
 header_data
)
)
 COLUMNS
 issued TIMESTAMP PATH 'issued',
 title VARCHAR(128) PATH 'title',
 author_name VARCHAR(255) PATH 'author/name'
) AS result

Listing 26: Query to access atom feed with basic authentication

The results of the query are shown in Figure 6.

Figure 6: Result set

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

39

Summary
This paper has provided reference for how to use the HTTP functions, and how to combine them with the
XML support that is available in DB2 for i 7.1.

When the new tools in the SYSTOOLS schema are combined with the built-in XML support available in
DB2 for i, developers and architects have a tremendous opportunity to use the web services within SQL.
These new functions are simple to use, and yet adaptable enough to tackle many challenges. Customers

who prefer to use routines written in external languages such as RPG or C (as opposed to Java) can still
find these functions useful for initial development and exploration of web services, before investing in a
solution that meets the exact needs of the business.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

40

Resources
The following websites provide useful references to supplement the information contained in this paper:

 Accessing RESTful services from DB2: Introducing the REST user-defined functions for

DB2. (This article talks about the support for these functions on DB2 for z/OS and DB2 for
LUW)

ibm.com/developerworks/data/library/techarticle/dm-1105httprestdb2/

 RESTful Web services: the basics

ibm.com/developerworks/webservices/library/ws-restful/

 SOA and web services on developerWorks

ibm.com/developerworks/webservices/

 XMLTABLE tutorial

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzasp%2Frbafyxmlte

xample.htm

 Tutorial for SQL/XML publishing functions

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzasp%2Frba
fyxml3909.htm

 Replacing XML Extender with the integrated SQL/XML support

ibm.com/partnerworld/page/stg_ast_sys_wp_db2_xml_extender_capablities

 Using RPG to exploit DB2 XML Support

ibm.com/developerworks/ibmi/library/i-using-rpg/index.html

 Getting started with the XML Data Type Using DB2 for IBM i

http://www.ibmsystemsmag.com/ibmi/developer/general/xml_db2_part1/

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

41

 Using XML with DB2 for IBM i

http://www.ibmsystemsmag.com/ibmi/developer/general/xml_db2_part2/

 Now Introducing XML in SQL on DB2 for IBM i!

http://www.mcpressonline.com/sql/now-introducing-xml-in-sql-on-db2-for-ibm-i.html

 DB2 for IBM i Technology updates
ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/IBM%20i%20Tec

hnology%20Updates/page/DB2%20for%20i%20-%20Technology%20Updates

 Hypertext Transfer Protocol (RFC 2616)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

 HTTP Status Codes (RFC 2616 section 10)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

 URL Specification (RFC 1738)

http://www.ietf.org/rfc/rfc1738.txt

 W3C Recommendation for non-ASCII characters in URL Attribute Values

http://www.w3.org/TR/html40/appendix/notes.html#non-ascii-chars

 Common HTTP header fields

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

 Information on the Post/Redirect/Get web development design pattern

http://en.wikipedia.org/wiki/Post/Redirect/Get

 Atom Standard

http://en.wikipedia.org/wiki/Atom_%28standard%29

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

42

 JVM command-line options

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp?topic=%2Fcom.ibm.java.d

oc.diagnostics.60%2Fdiag%2Fappendixes%2Fcmdline%2Fcommands_jvm.html

 Using multiple Java Developer Kits on IBM i

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzaha%2Fmu
ltjdk.htm

 Setting Java system properties

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzaha%2Fsys
prop.htm

 List of Java system properties

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzaha%2Fsys

prop2.htm

 Digital Certificate Manager

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahu%2Frza
hurazhudigitalcertmngmnt.htm

 IBM i keytool utility

http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Frzahz%2Frzahzkeyt
ool.htm

 IBM Java V6 security information for the keytool utility

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp?topic=%2Fcom.ibm.java.s

ecurity.component.doc%2Fsecurity-
component%2FkeytoolDocs%2Fkeytool_overview.html

 Secure IBM i with JDBC over SSL

http://www.ibmsystemsmag.com/ibmi/administrator/security/secure_ssl/?page=1

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

43

About the authors

Nick Lawrence is an Advisory Software Engineer working on DB2 for i in IBM Rochester. He has been
involved with DB2 for i since 1999. His most recent responsibilities have been in the area of full text

search, SQL/XML, and XMLTABLE. You can reach Nick at ntl@us.ibm.com.

Yi Yuan is a software developer in DB2 team in CSTL (China System and Technology Lab). Yi has been

working on XML new features of DB2 for i since 2009. Before that, Yi worked on development of IBM
OmniFind® Text Search Server for DB2 for i. You can reach Yi at cdlyuany@cn.ibm.com.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

44

Trademarks and special notices
© Copyright IBM Corporation 2013.

References in this document to IBM products or services do not imply that IBM intends to make them

available in every country.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A

current list of IBM trademarks is available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or

its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of
such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly

available information, including vendor announcements and vendor worldwide homepages. IBM has not
tested these products and cannot confirm the accuracy of performance, capability, or any other claims
related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the

supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice,
and represent goals and objectives only. Contact your local IBM office or IBM authorized reseller for the

full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as a definitive
statement of a commitment to specific levels of performance, function or delivery schedules with respect to

any future products. Such commitments are only made in IBM product announcements. The information is
presented here to communicate IBM's current investment and development activities as a good faith effort
to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the

storage configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

http://www.ibm.com/legal/copytrade.shtml

Accessing web services using IBM DB2 for i HTTP UDFs and UDTFs

45

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of

the materials for this IBM product and use of those websites is at your own risk.

	Abstract
	Introduction
	Sample code
	Prerequisites
	HTTP overview
	Uniform Resource Locator
	HTTP methods
	POST
	GET
	PUT
	DELETE
	HEAD

	HTTP methods in a service-oriented architecture

	HTTP request header fields and connection properties
	Setting the time out values
	Following redirects

	HTTP response code and header fields
	Request message
	Response message
	Function reference
	SQL HTTP table (verbose) functions
	SQL HTTP scalar functions
	SQL helper functions
	Encoding and decoding an HTTP URL
	Base64 encoding and decoding

	Configuring the JVM
	Selecting the JVM
	JVM options and Java system properties
	Using a truststore and keystore for SSL
	HTTP proxy support
	Increasing the JVM heap size

	Basic authentication
	Example scenarios
	Load a web resource into the local database
	Using data obtained from a web service in a join
	Using a SOAP API
	Publishing content to a remote server
	Processing the response message HTTP header
	Accessing a web service using basic authentication

	Summary
	Resources
	About the authors
	Trademarks and special notices

